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IBMQ
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Writing Quantum Programs is Hard

 Quantum indeterminacy = quantum programs are probabilistic

e Quantum programs are often written as circuits
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e Quantum programs use new primitives
> E.g. “prepare a uniform superposition”, “perform a Fourier transform”

Image from https://en.wikipedia.org/wiki/Quantum phase estimation algorithm
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Quantum Machines are Limited

 Machines today have a few, unreliable qubits
> Typically 15-50 qubits in total
> In the near future, we can expect machines with a few hundred qubits,

L
4

able to run up to 1000 two-qubit gates

* They also have hardware-specific constraints
> Limited set of available operations
> Only allow two-qubit gates between certain pairs of qubits

Noisy, Intermediate Scale Quantum (NISQ) Computing -Preskill

4 Image from https://github.com/Qiskit/ibmg-device-information
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Quantum Compilers are Complicated

 Quantum compilers need to perform sophisticated transformations to

account for limited resources, hardware constraints

 These transformation are hard to write... and harder to debug

> |s an unexpected result due to a program bug”? machine error?
quantum indeterminacy?
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Verified Compiler Stack

 End goal: verified compiler stack for guantum programs

High-level Language  Challenge: The semantics of

.g. Quipper, Q# ]

means that we’ve formally quantum programs IS very

verified that the transformation is —— ‘ different from classical pPrograms

semantics-preserving - :
Unoptimized IR » States represented as matrices
E.g. OpenQASM, Quil

description of a circuit / i _ of Complex numbers

e.g. a list of gates

.v > Programs involve probabilities,

optimization / o trigonometry
circuit synthesis Optimized IR
circuit mapping

‘, * Requires development of new

frameworks, libraries, and
Hardware Instructions automation




SQIR and VOQC

 Our paper: VOQC, a Verified Optimizer for Quantum Circuits, which is built on top
of SQIR, a Small Quantum Intermediate Representation designed for proof

High-level Language
E.g. Quipper, Q#

e

Unoptimized IR -
E.g. OpenQASM, Quil Unoptimized SQIR

v 4 voac

Optimized IR Optimized SQIR

Hardware Instructions




SQIR and VOQC

SQIR and VOQC are implemented in around 11k lines of Coq code

> 3.5k for core SQIR, source program proofs

» 7.5k for VOQC libraries, optimizations, circuit mapper

> We extend QWIRE’s matrix & complex number libraries by 3Kk lines

Long version of the paper available at https://arxiv.org/abs/1912.02250

Code available at https://github.com/inQWIRE/SQIR

Artifact available at https://zenodo.org/record/4268896
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Outline

Intro to Quantum Programming
SQIR
VOQC

Future Work



Qubits
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Superposition: Qubits can be in multiple states (0O or 1) at once




Measurement
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Measurement:. Looking at a qubit probabilistically turns it into a bit.
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Measurement:. Looking at a qubit probabilistically turns it into a bit.



Operators

A unitary operator transforms, or evolves, a state

H 10) =1

H [+ =10)

This Is the Hadamard operator, H
(which is its own inverse)
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Operators

Operators are represented as unitary matrixes

()60
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Multiple Qubits

[H®10) = [H]|0) o [+0)

Multi-qubit states are constructed via the tensor product



Measurement 2.0
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Measurement 2.0
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Entanglement
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Entangled qubits are not probabilistically independent —
they cannot be decomposed. Connection at a distance!
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Multi-Qubit Unitaries
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More Unitaries

A universal sets of unitaries can be used to approximate any
unitary operator using a finite sequence of gates

0 1 [0) = 1)
X = it fli
(1 O) oIt Hiip 1) = | 0)
1 O . 0= 10)
Rz(0) = (O ei@) phase shift 1) e e 1)
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General Quantum States

e So far we have seen pure states

- E.g. 10),11), [&

* A mixed state is a (classical) probability distribution over pure states

» E.g. | |0) with probability 1/2
| 1) with probability 1/2

* Density matrices allow us to describe both pure and mixed states

p=\0><0\=((1) 8) p %\0><0\+§\1><1\=(l(§2 1(,’2>
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Circuits

Quantum programs are often written as circuits

> three qubits

three gates
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Circuits

Quantum programs are often written as circuits

iInput
states
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Circuits

Quantum programs are often written as circuits

Hadamard

control
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Quantum Programming

def ghz_state(qubits):

H —e H O program = Program()

program += H(qubits[0])

Jan
NZA CNOT 0 1 for q1,q2 in zip(qubits, qubits[1:]):
D CNOT 1 2 program += CNOT(ql, q2)
Circuit Quil (Rigetti) return program

PyQuil (Rigetti)

Many “high-level” quantum programming languages (e.g. PyQuil, Cirq,
Qiskit, Quipper, QWIRE) are libraries for constructing circuits

22



SQIR: Small Quantum Intermediate Representation

* SQIR programs, embedded in High-level Language
Coq, are assigned a i
denotational semantics of
matrices

Unoptimized OpenQASM

« Two variations of SQIR voQc

measurement

* Full SQIR: Adds branching
measurement operator Hardware Instructions
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Unitary SQIR

 Semantics parameterized by gate set G and dimension d of a global register

U = Up;; Uy |Gql G q1 g E.g. apply,(X,q,d) =
[, @ <(1) (1)> & L—g-1)
e The denotation (semantics) of Uis a 2¢ x 2¢ unitary matrix

\U1; Uslla= [Uzlax [U1i]aq q<d

Gy qlla = {applyl(Gl, g, d)” well-typed « /
094 otherwise s<d A <d A ta
apply2(G2, q1, g2, d) well-typed«
Q _
G2 1 g2la {02d otherwise
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Non-Unitary SQIR

 Semantics parameterized by gate set G and dimension d of a global register

P =

skip | P1; P> |U |meas q P; P;

» The denotation of P is a function over 2¢ x 2¢ density matrices

{{meas q P; P,

ta(p) = p
}d(,D) i ({IPZI}d ’ ﬂpll}d)(p) Standard semantics;
}d(P) = [[U]la x p x [[U]]Z also used in QHL

and QWIREZ

Fa(p) = {P2[ra(]0)4{0] x p x [0)4(0])
+ {P1fta(|1)g(1] x p x [1)4(1])

1Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.
25 2 Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.



SQIR Metaprogramming

 SQIR programs just express circuits. We can express parameterized
circuit families using Coqg as a meta programming language

0 | H ] Fixpoint ghz (n : N) : ucom base n :=
0) NVan match n with

|10) D | 0 = SKIP

Z : ] 1 = HO

O) o | Sn' = ghz n'; CNOT (n'-1) n'

0) D end.

 The ghz Coq function returns a SQIR program (of type ucom base n)
whose semantics is the n-qubit GHZ state

20



Proofs of Correctness in Coq

* We might like to prove that evaluating ghz n on |0)®" produces |GHZ")

> where |GHZ") =%<\O>®”+\1>®”)

Definition GHZ (n : N) : Vector (2 ~ n) :=
match n with

| O = I 1
| Sn' = :%§=k|0)®” +-j5§ * [1)®"
end.

Lemma ghz_correct : V n : N,

n >0 — [ghz n], x [0)®°" = GHZ n.
Proof.

Qed.

27



Designed for Proof

 SQIR was conceived as a simplified version of QWIRE?; we use QWIRE’s
libraries for matrices and complex numbers

* SQIR proofs are simpler that QWIRE’s because we:

1. Reference qubits using concrete indices (CNOT 2 1 vs. CNOT x vy)
» Easy to map gate arguments to the right column/row in the matrix
> Disjointness is syntactic; important for proving equivalences

2. Separate the unitary core from the full language with measurement
> Unitary matrix semantics simpler than density matrix formulation

3. Assign a denotation of the zero-matrix to ill-typed programs
> E.g., CNOT 1 1, which violates no-cloning

1Paykin, Rand and Zdancewic. QWIRE: A core language for quantum circuits. POPL 2017.
28



Proofs so Far

 \We have formally verified several source programs correct
> Quantum teleportation / superdense coding
» GHZ state preparation
> Deutsch-Jozsa algorithm
> Simon’s algorithm
> Grover’s search algorithm
> Quantum phase estimation (key part of Shor’s algorithm)

 These proofs as well as the basic support of SQIR (lemmas, tactics, etc.)
constitute about 3500 lines of Coqg code

* For more details see https://arxiv.org/abs/2010.01240
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VOQC: A Verified Optimizer for Quantum Circuits

e Transformations are
represented as Cog E.g. Quipper, Q#
functions over SQIR circuits

» Extracted to executable
OCaml code

High-level Language

Unoptimized OpenQASM

vOoQC

transformations are Optimized OpenQASM
semantics-preserving

> (Can also prove that the
output program respects Hardware Instructions
machine constraints

* \We prove (verify) that —

30



VOQC in Sum

 Most of VOQC (2200 LOC) consists of verified implementations of
optimizations developed by Nam et al.’

> Replacement (peephole optimizations)
> Propagation (commutation) and cancellation
> Rotation merging (hon-local coalescing)

e Some optimizations for non-unitary programs, inspired by Qiskit (800 LOC)
> Remove z-rotations before measurement
> Classical state propagation

 Another 2100 LOC for program manipulation; 2100 more for circuit mapping

TNam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.
31



Example: X Propagation

Edy X Y -1
HuHzF =< aHzF - xHuHz}F — aHzHzF

« Based on Nam et al' “*not propagation”

* \We verify semantics-preservation

> At each step, the denotation of the program (i.e. unitary matrix) does not
change

* \We prove this via induction on the structure of the input program
> ~30 lines to implement optimization
» ~2/70 lines to prove semantics-preservation

TNam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.
32
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Verifying Matrix Equivalences

 Many proofs use unitary equivalences; e.g., X propagation’s proof uses:

> X gates cancel: XmXm=Im

» X commutes with CNOT control: X m;CNOT m n= CNOT m n; X m;X n
» X commutes with CNOT target: X n;CNOT mn=CNOT mn; X n

» H transforms X to Z: Xm;Hm=Hm;Zm

 We prove these as lemmas

> Doing so is tedious, so we developed Coq tactics to convert matrix
expressions into a grid normal form to facilitate automation
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Grid Normal Form

 Consider the equivalence X n; CNOT m n = CNOT m n; X n

* Per our semantics, this requires proving

apply, (X, n,d) x apply,(CNOT, m,n,d) = apply,(CNOT, m,n,d) x apply;(X,n,d)

> where
apply, (X, n,d) = Ihn @ o ® Irq
apply, (CNOT, m,n,d) = Im ® [1){(1| @ Lip ® 05 ® g +Iom ® |0)(0| ® Inp ® I ® Izq

* Our automation reduces both sides of the equality to grid normal form

Lm @ 1){1| @ L @ Iy ® Ing + Iym ® [0){0]| @ Irp ® 0y ® Irg

34



More Interesting: Rotation Merglng

Input state is \abc> /\ .............................................................................................................................

merge

 Based on Nam et al rotation merging

 Combines Rz gates in arbitrary {Rz, CNOT} sub-circuits
> ~100 lines to Implement optimization
> ~920 lines to prove semantics-preservation

35



Also: Circuit Mapping

* Given an input program & description of machine connectivity, circuit
mapping produces a program that satisfies connectivity constraints

> Usually uses SWAP gates to“move” qubits by exchanging their values

W) &)
?) 1%
> E.g CNOT 0 2 , [o]+«—{1]«—[2] — swAP 0 1; CNOT 1 2

 We prove that the output program is equivalent to the original, up to
permutation of indices

> Above, [CNOTO02]3 =P x[SWAP O 1;CNOT 1 2]3 where P implements the
permutation {0 -1, 1 -0, 2 - 2}

36




https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
nttps://github.com/Quantomatic/pyzx

OO~r0WON—=

Evaluation

e |s VOQC any good? Maybe we just verified simple optimizations

o S0: Compared our verified optimizer against existing unverified optimizers
> |IBM Qiskit Terra v0.15.121
> Cambridge CQC tket v0.6.02
> Nam et al,3 both L and H levels (used by lonQ)
> Amy et al4
> PyZX v0.6.0°
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Benchmark

 Used benchmark suite of Amy et al

e 28 programs: Arithmetic circuits, implementations of multiple-control
Toffoli gates, and Galois field multiplier circuits

 Ranging from 45 to 13,593 gates and 5 to 96 qubits
 Uses the Clifford+T gate set (CNOT, H, S and T)

 We measured effectiveness in terms of gate reductions
 Both T gate and total

 Measured optimization time (not parsing or printing)

1TAmy, Maslov and Mosca. Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning. TCAD 20183.
38
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Results

OO~r0WON—=

Geo. mean compilation times

VOQC is the

iskit’ tket2 |Nams3 (L) Nam(H)| Amy4 | PyZX5 | VOQC
@ (L) (H) Y Y @ same ballpark

0.812s | 0.129s | 0.002s | 0.018s | 0.00/s | 0.384s | 0.013s

Geo. mean reduction in gate count Geo mean. reduction in T gate count

Qiskit tket |[Nam (H)| VOQC Amy PyZX |Nam(H)| VOQC

42.6% 41.4% 41.4%

101% | 10.6% | 24.8% | 1/7.8%

VOQC only outperformed by Nam VOQC only outperformed by PyZX

39
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Total Gate Count

No Bugs!

Name Original Qiskit t|lket) Nam (L) Nam (H) VOQC
adder 8 900 805 775 646 606 682
barenco tof 3 58 51 51 42 40 50
barenco_tof 4 114 100 100 78 72 95
barenco_tof 5 170 149 149 114 104 140
barenco _tof 10 450 394 394 294 264 365
csla_mux 3 170 156 155 161 155 158
csum_mux_9 420 382 361 294 266 308
gf2 "4 mult 225 206 206 187 187 192
gf2"5_mult 347 318 319 296 296 291
gf2"6_mult 495 454 454 403 403 410
gf2"7_mult 669 614 614 555 555 549
gf2 "8 mult 883 804 806 712 712 705
gf2"9_mult 1095 1006 1009 891 891 885
gf2710_mult 1347 1238 1240 1070 1070 1084
gf2"16_mult 3435 3148 3150 2707 2707 2695
gf2"32_mult 13593 12506 12507 10601 10601 10577
mod5 4 63 58 58 51 51 56
mod_mult 55 119 106 102 91 91 90
mod_red_21 278 227 224 184 180 214
qcla_adder_10 521 469 460 411 399 4
qcla_com_7 443 398 392 284 284 314
qcla_mod_7 884 793 780 636 624 723
rc_adder 6 200 170 172 142 140 157
tof 3 45 40 40 35 35 40
tof 4 75 66 66 55 55 65
tof 5 105 92 92 75 75 90
tof 10 255 222 222 175 175 215
vbe adder 3 150 138 139 89 89 101
Geo. Mean Reduction - 10.1% 10.6% 23.3% 24.8% 17.8%

T-Gate Count

Name Original Amy PyZX Nam (L) Nam (H) VOQC
adder 8 399 215 173 215 215 215
barenco tof 3 28 16 16 16 16 2
barenco_tof 4 56 28 28 28 . &
barenco_tof 5 84 40 40 40 40 40
barenco_tof 10 224 100 100 100 50 100
csla_mux_ 3 70 62 b2 64 64 64
csum_mux_9 196 112 84 B 84 84
gf2"4_mult 112 68 68 68 68 68
gf2"5_mult 175 111 5 115 115 11
gf2"6_mult 252 158 150 150 150 50
gf2"7_mult 343 217 217 217 217 217
gf2"8_mult 448 264 264 264 264 264
gf2"9_mult 567 351 351 351 351 351
gf2"10_mult 700 410 410 410 410 410
1792 1040 1040 1040 1040 1040
7168 4128 4128 4128 412§ 4128
28 16 8 16 16 16
mod_mult_ 55 49 37 35 35 5 35
mod_red_21 119 73 73 73 3 73
qcla_adder_10 238 162 162 162 162 164
qcla_com_7 203 95 95 95 95 95
qcla_mod_7 413 249 237 237 235 249
rc_adder 6 77 63 47 47 47 47
tof 3 21 15 15 15 15 15
tof 4 35 23 23 23 23 23
tof 5 49 31 31 31 31 31
tof 10 119 71 71 71 71 71
vbe adder 3 70 24 24 24 24 24
Geo. Mean Reduction - 39.7% 42.6% 41.4% 41.4% 41.4%

1 Nam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.

2 Kissinger and van de Wetering. PyZX: Large scale automated diagrammatic reasoning. QPL 2019.
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Summary and Future Work

3. Other verified elements of the
stack (some of which involve

* SQIR and VOQC: Two building challenging designs) Ongoing work
blocks of a verified quantum High-level Language
software stack =9 Suibpen B¢

 Powerful enough to verify .'

state-of-the-art
1. New optimizations VOQC

2. New proofs (full Shor’s)

optimizations, and prove
source programs correct (e.g. inspired by Qiskit)

 Resulted in novel

frameworks, libraries,

automation for guantum Hardware Instructions
program proofs

github.com/inQWIRE/SQIR
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