
A Verified Optimizer for
Quantum Circuits

POPL 2021

Kesha Hietala
University of Maryland

kesha@cs.umd.edu

Robert Rand

University of Chicago

rand@uchicago.edu

Shih-Han Hung

University of Maryland

shung@umd.edu

Xiaodi Wu

University of Maryland

xwu@cs.umd.edu

Michael Hicks

University of Maryland

mwh@cs.umd.edu

1

mailto:kesha@cs.umd.edu
mailto:rand@uchicago.edu
mailto:shung@umd.edu
mailto:xwu@cs.umd.edu
mailto:mwh@cs.umd.edu

Image from https://www.ibm.com/quantum-computing/

https://www.ibm.com/quantum-computing/

Writing Quantum Programs is Hard
• Quantum indeterminacy quantum programs are probabilistic⇒

• Quantum programs are often written as circuits

• Quantum programs use new primitives

‣ E.g. “prepare a uniform superposition”, “perform a Fourier transform”

3
Image from https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm

https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm

Quantum Machines are Limited

• Machines today have a few, unreliable qubits

‣ Typically 15-50 qubits in total

‣ In the near future, we can expect machines with a few hundred qubits,

able to run up to 1000 two-qubit gates

• They also have hardware-specific constraints
‣ Limited set of available operations

‣ Only allow two-qubit gates between certain pairs of qubits

4

Noisy, Intermediate Scale Quantum (NISQ) Computing -Preskill
Image from https://github.com/Qiskit/ibmq-device-information

https://github.com/Qiskit/ibmq-device-information/tree/master/backends/yorktown/V1

Quantum Compilers are Complicated
• Quantum compilers need to perform sophisticated transformations to

account for limited resources, hardware constraints

• These transformation are hard to write… and harder to debug

‣ Is an unexpected result due to a program bug? machine error?

quantum indeterminacy?

5

Verified Compiler Stack

High-level Language
E.g. Quipper, Q#

Unoptimized IR
E.g. OpenQASM, Quil

Optimized IR

Hardware Instructions

optimization

circuit synthesis

circuit mapping

…

means that we’ve formally
verified that the transformation is
semantics-preserving

• End goal: verified compiler stack for quantum programs

6

• Challenge: The semantics of
quantum programs is very
different from classical programs

‣ States represented as matrices

of complex numbers

‣ Programs involve probabilities,

trigonometry

• Requires development of new
frameworks, libraries, and
automation

description of a circuit

e.g. a list of gates

SQIR and VOQC

High-level Language
E.g. Quipper, Q#

Unoptimized IR
E.g. OpenQASM, Quil

Optimized IR

Hardware Instructions

• Our paper: VOQC, a Verified Optimizer for Quantum Circuits, which is built on top
of SQIR, a Small Quantum Intermediate Representation designed for proof

7

Unoptimized SQIR

Optimized SQIR

VOQC

SQIR and VOQC
• SQIR and VOQC are implemented in around 11k lines of Coq code

‣ 3.5k for core SQIR, source program proofs

‣ 7.5k for VOQC libraries, optimizations, circuit mapper

‣ We extend QWIRE’s matrix & complex number libraries by 3k lines

• Long version of the paper available at https://arxiv.org/abs/1912.02250

• Code available at https://github.com/inQWIRE/SQIR

• Artifact available at https://zenodo.org/record/4268896

8

https://github.com/inQWIRE/QWIRE
https://arxiv.org/abs/1912.02250
https://github.com/inQWIRE/SQIR
https://zenodo.org/record/4268896

Outline

• Intro to Quantum Programming

• SQIR

• VOQC

• Future Work

9

(1
0) (0

1)(α
β)

|α |2 + |β |2 = 1
Superposition: Qubits can be in multiple states (0 or 1) at once

∣0⟩ ∣1⟩

Qubits

10

(α
β)

(1
0)

|α |2

(0
1)

|β |2

Measurement: Looking at a qubit probabilistically turns it into a bit.

Measurement

11

∣0⟩ ∣1⟩

(1
0) (0

1)
Measurement: Looking at a qubit probabilistically turns it into a bit.

Measurement

12

()
1
2

1
2

1
2

2
= 1

2
1
2

2
= 1

2

∣0⟩ ∣1⟩

|+⟩ state

=

Operators

H

H

A unitary operator transforms, or evolves, a state

This is the Hadamard operator, H
(which is its own inverse)

13

∣0⟩ |+⟩

∣0⟩|+⟩ =

1
2 (1 1

1 −1)
1
2 (1 1

1 −1)
(1

0)
(1

0)
()

1
2

1
2

()
1
2

1
2

Operators are represented as unitary matrixes

Operators

14

=

=

() ⊗ (1
0)

1
2

1
2

0

0

1
2

1
2

=

Multi-qubit states are constructed via the tensor product

Multiple Qubits

15

|+⟩ ⊗ |0⟩ = |+⟩ |0⟩ |+ 0⟩or

0
0

1
2

1
2

1
2

1
2

1
0
0
0

0
0
0
1

Measurement 2.0

16

0
0

1
2

1
2

1
2

1
2

(1
0) ⊗ (1

0) (0
1) ⊗ (0

1)
|00⟩ |11⟩

Measurement 2.0

16

0
0

1
2

1
2

Entangled qubits are not probabilistically independent —

they cannot be decomposed. Connection at a distance!

? ⊗ ?

Entanglement

17

0

0

1
2

1
2

() ⊗ (1
0)

1
2

1
2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

0
0

1
2

1
2

=0

0

1
2

1
2

CNOT |+ 0⟩ 1
2

(∣ 00⟩ + ∣ 11⟩)=

Multi-Qubit Unitaries

18

A universal sets of unitaries can be used to approximate any
unitary operator using a finite sequence of gates

X = (0 1
1 0)

Rz(θ) = (1 0
0 eiθ)

bit flip

phase shift

More Unitaries

19

|0⟩ ↦ |1⟩
|1⟩ ↦ |0⟩

|0⟩ ↦ |0⟩
|1⟩ ↦ eiθ |1⟩

General Quantum States
• So far we have seen pure states

‣ E.g. , ,

• A mixed state is a (classical) probability distribution over pure states

‣ E.g. with probability 1/2

 with probability 1/2

• Density matrices allow us to describe both pure and mixed states

20

ρ = 1
2 |0⟩⟨0 | + 1

2 |1⟩⟨1 | = (1/2 0
0 1/2)

|0⟩
|1⟩

ρ = |0⟩⟨0 | = (1 0
0 0)

|0⟩ |1⟩ |+⟩

CircuitsCircuits

21

three qubits

three gates

Quantum programs are often written as circuits

CircuitsCircuits

21

input

states

Quantum programs are often written as circuits

CircuitsCircuits

21

Hadamard

gate CNOT

gate control

target

Quantum programs are often written as circuits

Quantum Programming

Circuit Quil (Rigetti)
PyQuil (Rigetti)

22

Many “high-level” quantum programming languages (e.g. PyQuil, Cirq,
Qiskit, Quipper, QWIRE) are libraries for constructing circuits

SQIR: Small Quantum Intermediate Representation

• SQIR programs, embedded in
Coq, are assigned a
denotational semantics of
matrices

• Two variations of SQIR

• Unitary SQIR: No

measurement

• Full SQIR: Adds branching

measurement operator

23

High-level Language
E.g. Quipper, Q#

Unoptimized OpenQASM

Optimized OpenQASM

Hardware Instructions

Unoptimized SQIR

Optimized SQIR

VOQC

Unitary SQIR
• Semantics parameterized by gate set G and dimension d of a global register

• The denotation (semantics) of U is a unitary matrix2d × 2d

24

E.g.

apply1(X, q, d) =
I2q ⊗ ⊗ I2(d−q−1)

q1 < d ∧ q2 < d ∧ q1 ≠ q2

q < d

(0 1
1 0)

• Semantics parameterized by gate set G and dimension d of a global register

• The denotation of P is a function over density matrices2d × 2d

Non-Unitary SQIR

25

Standard semantics;
also used in QHL1

and QWIRE2

1 Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.

2 Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.

SQIR Metaprogramming
• SQIR programs just express circuits. We can express parameterized

circuit families using Coq as a meta programming language

• The ghz Coq function returns a SQIR program (of type ucom base n)
whose semantics is the n-qubit GHZ state

26

|0⟩ H
. .

.
|0⟩
|0⟩

|0⟩
|0⟩

. .
.

Proofs of Correctness in Coq
• We might like to prove that evaluating ghz n on produces

‣ where

|0⟩⊗n |GHZn⟩

27

...

|GHZn⟩ = 1
2

(|0⟩⊗n + |1⟩⊗n)

Designed for Proof
• SQIR was conceived as a simplified version of QWIRE1; we use QWIRE’s

libraries for matrices and complex numbers

• SQIR proofs are simpler that QWIRE’s because we:
1. Reference qubits using concrete indices (CNOT 2 1 vs. CNOT x y)
‣ Easy to map gate arguments to the right column/row in the matrix
‣ Disjointness is syntactic; important for proving equivalences

2. Separate the unitary core from the full language with measurement
‣ Unitary matrix semantics simpler than density matrix formulation

3. Assign a denotation of the zero-matrix to ill-typed programs
‣ E.g., CNOT 1 1, which violates no-cloning

28

1Paykin, Rand and Zdancewic. QWIRE: A core language for quantum circuits. POPL 2017.

Proofs so Far
• We have formally verified several source programs correct
‣ Quantum teleportation / superdense coding
‣ GHZ state preparation
‣ Deutsch-Jozsa algorithm
‣ Simon’s algorithm
‣ Grover’s search algorithm
‣ Quantum phase estimation (key part of Shor’s algorithm)

• These proofs as well as the basic support of SQIR (lemmas, tactics, etc.)
constitute about 3500 lines of Coq code

• For more details see https://arxiv.org/abs/2010.01240

29

https://arxiv.org/abs/2010.01240

VOQC: A Verified Optimizer for Quantum Circuits

• Transformations are
represented as Coq
functions over SQIR circuits

‣ Extracted to executable

OCaml code

• We prove (verify) that
transformations are
semantics-preserving

‣ Can also prove that the

output program respects
machine constraints

30

High-level Language
E.g. Quipper, Q#

Unoptimized OpenQASM

Optimized OpenQASM

Hardware Instructions

Unoptimized SQIR

Optimized SQIR

VOQC

VOQC in Sum
• Most of VOQC (2200 LOC) consists of verified implementations of

optimizations developed by Nam et al.1

‣ Replacement (peephole optimizations)

‣ Propagation (commutation) and cancellation

‣ Rotation merging (non-local coalescing)

• Some optimizations for non-unitary programs, inspired by Qiskit (800 LOC)

‣ Remove z-rotations before measurement

‣ Classical state propagation

• Another 2100 LOC for program manipulation; 2100 more for circuit mapping

31
1Nam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.

Example: X Propagation

• Based on Nam et al1 “not propagation”

• We verify semantics-preservation

‣ At each step, the denotation of the program (i.e. unitary matrix) does not

change

• We prove this via induction on the structure of the input program

‣ ~30 lines to implement optimization

‣ ~270 lines to prove semantics-preservation

32

X X
ZH

X X
ZHX ZZH HZHX

1Nam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.

X

Verifying Matrix Equivalences

33

• Many proofs use unitary equivalences; e.g., X propagation’s proof uses:
‣ X gates cancel:
‣ X commutes with CNOT control:
‣ X commutes with CNOT target:
‣ H transforms X to Z:

• We prove these as lemmas
‣ Doing so is tedious, so we developed Coq tactics to convert matrix

expressions into a grid normal form to facilitate automation

X m; X m ≡ I m
X m; CNOT m n ≡ CNOT m n; X m; X n
X n; CNOT m n ≡ CNOT m n; X n
X m; H m ≡ H m; Z m

Grid Normal Form
• Consider the equivalence

• Per our semantics, this requires proving

‣ where

• Our automation reduces both sides of the equality to grid normal form

34

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

X n; CNOT m n ≡ CNOT m n; X n

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

Dra� paper, November 22, 2019, K. Hietala, R. Rand, S. Hung, X. Wu & M. Hicks

gate applications are �attened so that a s��� program like(G1 p;G2 q);G3 r is represented as the Coq list [G1 p;G2 q;G3 r].
This representation simpli�es �nding patterns of gates.

The optimization functions expect a program’s gates G
to be drawn from the set {H , X , Rz� �4, CNOT} where
Rz� �4(k) describes rotation about the z-axis by k ⋅ ��4 for
k ∈ Z. Either the parser must produce input programs using
this gate set, or ���� must convert the program to use it
before optimizations can be applied. This gate set is universal
and consistent with previous circuit optimizers, e.g., Amy
et al. [5]. Rotations are not parameterized by arbitrary re-
als, which would make veri�cation unsound if these were
extracted to OCaml �oating point numbers (which are used
in the gate sets used by Nam et al. [34] and Qiskit [2]). It
would be easy to support Rz� �2n for higher n if �ner-grained
rotations are needed.

Programs in the list representation are deemed equivalent
if their back-converted s��� programs are equivalent, per
the de�nition in Section 3.1. Conversion translates ����’s
gatesH ,X , and Rz� �4(k) into base gates R� �2,0,� , R� ,0,� , and
R0,0,k� �4, respectively. (CNOT translates to itself.)

Most of ����’s optimizations are inspired by the state-of-
the-art circuit optimizer by Nam et al. [34]. There are two
basic kinds of optimizations: replacement and propagation
and cancellation. The former simply identi�es a pattern of
gates and replaces it by an equivalent pattern. The latter
works by commuting sets of gates when doing so produces
an equivalent quantum program—often with the e�ect of
“propagating” a particular gate rightward in the program—
until two adjacent gates can be removed because they cancel
each other out.

4.2 Proving Circuit Equivalences
All of ����’s optimizations use circuit equivalences to justify
local rewrites. Proof that an optimization is correct thus relies
on proofs that the circuit equivalences it uses are correct.
Many of our circuit equivalence proofs have a common form,
which we illustrate by example.

Suppose we wish to prove the equivalence

X n; CNOT m n ≡CNOT m n; X n

for arbitrary n,m and dimension d . Applying our de�nition
of equivalence, this amounts to proving

appl�1(X ,n,d) × appl�2(CNOT ,m,n,d) =
appl�2(CNOT ,m,n,d) × appl�1(X ,n,d), (1)

per Figure 3. Suppose both sides of the equation are well
typed (m < d and n < d andm �= n), and consider the case
m < n (the n < m case is similar). We expand appl�1 and
appl�2 as follows with p = n −m − 1 and q = d −n − 1:

appl�1(X ,n,d) = I2n ⊗ �x ⊗ I2q

appl�2(CNOT ,m,n,d) = I2m ⊗ �1��1�⊗ I2p ⊗ �x ⊗ I2q

+ I2m ⊗ �0��0�⊗ I2p ⊗ I2 ⊗ I2q

Here,�x is thematrix interpretation of theX gate and �1��1�⊗
�x + �0��0�⊗ I2 is the matrix interpretation of theCNOT gate
(in Dirac notation). We complete the proof of equivalence by
normalizing and simplifying each side of Equation (1), and
showing both sides to be the same.

Automation Matrix normalization and simpli�cation are
almost entirely automated in ����. We wrote a Coq tac-
tic called gridify for proving general equivalences correct.
Rather than assumingm < n < d as above, the gridify tactic
does case analysis, immediately solving all cases where the
circuit is ill-typed (e.g.,m = n or d ≤m) and thus has the zero
matrix as its denotation. In the remaining cases (m < n and
n <m above), it puts the expressions into their “grid normal”
forms and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addi-
tion on the outside, followed by tensor product, withmultipli-
cation on the inside, i.e., ((..×..)⊗(..×..))+((..×..)⊗(..×..)).
The gridify tactic rewrites an expression into this form by
using the following rules of matrix arithmetic (where all the
dimensions are appropriate):
● Imn = Im ⊗ In● A × (B +C) = A × B +A ×C● (A + B) ×C = A ×C + B ×C● A⊗ (B +C) = A⊗ B +A⊗C● (A + B)⊗C = A⊗C + B ⊗C● (A⊗ B) × (C ⊗D) = (A ×C)⊗ (B ×D)

The �rst rule is applied to facilitate application of the other
rules. (For instance, in the example above, I2n would be re-
placed by I2m ⊗ I2 ⊗ I2p to match the structure of the appl�2
term.) After expressions are in grid normal form, gridify
simpli�es them by removing multiplication by the identity
matrix and rewriting simple matrix products (e.g. �x�x = I2).

In our example, after normalization and simpli�cation by
gridify, both sides of the equality in Equation (1) become

I2m ⊗ �1��1�⊗ I2p ⊗ I2 ⊗ I2q + I2m ⊗ �0��0�⊗ I2p ⊗ �x ⊗ I2q ,

proving that the two expressions are equal.
We use gridify to verify most of the equivalences used

in the optimizations given in Sections 4.3 and 4.4. The tactic
is most e�ective when equivalences are small: The equiv-
alences used in gate cancellation and Hadamard reduction
apply to patterns of at most �ve gates on up to three qubits.
For equivalences over larger, non-concrete circuits like the
one used in rotation merging, we do not use gridify directly,
but still rely on our automation for matrix simpli�cation.

4.3 Optimization by Propagation and Cancellation
Our propagate-cancel optimizations have two steps. First we
localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set
of gates. In ����most optimizations of this form use a library
of code patterns, but one—not propagation—is di�erent, so
we discuss it �rst.

6

H

H

H

Rz(y)

Rz(z)

H

Rz(w) H

H

More Interesting: Rotation Merging

35

• Based on Nam et al rotation merging

• Combines Rz gates in arbitrary {Rz, CNOT} sub-circuits

‣ ~100 lines to implement optimization

‣ ~920 lines to prove semantics-preservation

a

b

c

b

a b⊕

a

b c⊕

Rz(x) Rz(w)

Input state is

for

|abc⟩
a, b, c ∈ {0,1}

merge

Also: Circuit Mapping
• Given an input program & description of machine connectivity, circuit

mapping produces a program that satisfies connectivity constraints

‣ Usually uses SWAP gates to“move” qubits by exchanging their values

‣ E.g CNOT 0 2 , SWAP 0 1; CNOT 1 2→

• We prove that the output program is equivalent to the original, up to
permutation of indices
‣ Above, where P implements the

permutation {0 → 1, 1 → 0, 2 → 2}
36

0 1 2

SWAP|ψ⟩
|ϕ⟩

|ϕ⟩
|ψ⟩

Evaluation

• Is VOQC any good? Maybe we just verified simple optimizations

• So: Compared our verified optimizer against existing unverified optimizers

‣ IBM Qiskit Terra v0.15.121

‣ Cambridge CQC tket v0.6.02

‣ Nam et al,3 both L and H levels (used by IonQ)

‣ Amy et al4

‣ PyZX v0.6.05

37

1 https://qiskit.org/

2 https://cqcl.github.io/pytket/build/html/index.html

3 https://arxiv.org/pdf/1710.07345.pdf

4 https://arxiv.org/pdf/1303.2042.pdf

5 https://github.com/Quantomatic/pyzx

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx

Benchmark

• Used benchmark suite of Amy et al1

• 28 programs: Arithmetic circuits, implementations of multiple-control

Toffoli gates, and Galois field multiplier circuits

• Ranging from 45 to 13,593 gates and 5 to 96 qubits

• Uses the Clifford+T gate set (CNOT, H, S and T)

• We measured effectiveness in terms of gate reductions

• Both T gate and total

• Measured optimization time (not parsing or printing)

38

1Amy, Maslov and Mosca. Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning. TCAD 2013.

Results

Geo. mean reduction in gate count

Qiskit tket Nam (H) VOQC

10.1% 10.6% 24.8% 17.8%

Geo mean. reduction in T gate count

Amy PyZX Nam (H) VOQC

39.7% 42.6% 41.4% 41.4%

1 https://qiskit.org/

2 https://cqcl.github.io/pytket/build/html/index.html

3 https://arxiv.org/pdf/1710.07345.pdf

4 https://arxiv.org/pdf/1303.2042.pdf

5 https://github.com/Quantomatic/pyzx

Geo. mean compilation times

Qiskit1 tket2 Nam3 (L) Nam (H) Amy4 PyZX5 VOQC

0.812s 0.129s 0.002s 0.018s 0.007s 0.384s 0.013s

39

VOQC is the
same ballpark

VOQC only outperformed by Nam VOQC only outperformed by PyZX

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx

No Bugs!

40

Bugs found in
prior work1,2

via translation
validation

1 Nam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.

2 Kissinger and van de Wetering. PyZX: Large scale automated diagrammatic reasoning. QPL 2019.

Summary and Future Work
• SQIR and VOQC: Two building

blocks of a verified quantum
software stack
• Powerful enough to verify

state-of-the-art
optimizations, and prove
source programs correct
(QPE; Grover’s)

• Resulted in novel
frameworks, libraries,
automation for quantum
program proofs

41

High-level Language
E.g. Quipper, Q#

Unoptimized OpenQASM

Optimized OpenQASM

Hardware Instructions

Unoptimized SQIR

Optimized SQIR

VOQC1. New optimizations
(e.g. inspired by Qiskit)

2. New proofs (full Shor’s)

 github.com/inQWIRE/SQIR

3. Other verified elements of the
stack (some of which involve

challenging designs) Ongoing work

https://github.com/inQWIRE/SQIR

