A Verified Optimizer for Quantum Circuits

Kesha Hietala
University of Maryland kesha@cs.umd.edu

Robert Rand University of Chicago rand@uchicago.edu

Shih-Han Hung University of Maryland shung@umd.edu

Xiaodi Wu University of Maryland xwu@cs.umd.edu

Michael Hicks
University of Maryland
mwh@cs.umd.edu

POPL 2021

Image from https://www.ibm.com/quantum-computing/

Writing Quantum Programs is Hard

- Quantum indeterminacy ⇒ quantum programs are probabilistic
- Quantum programs are often written as circuits

- Quantum programs use new primitives
 - E.g. "prepare a uniform superposition", "perform a Fourier transform"

Quantum Machines are Limited

- Machines today have a few, unreliable qubits
 - Typically 15-50 qubits in total
 - In the near future, we can expect machines with a few hundred qubits, able to run up to 1000 two-qubit gates
- They also have hardware-specific constraints
 - Limited set of available operations
 - Only allow two-qubit gates between certain pairs of qubits

Quantum Compilers are Complicated

- Quantum compilers need to perform sophisticated transformations to account for limited resources, hardware constraints
- These transformation are hard to write... and harder to debug
 - Is an unexpected result due to a program bug? machine error? quantum indeterminacy?

Verified Compiler Stack

• End goal: verified compiler stack for quantum programs

- Challenge: The semantics of quantum programs is very different from classical programs
 - States represented as matrices of complex numbers
 - Programs involve probabilities, trigonometry
- Requires development of new frameworks, libraries, and automation

SQIR and VOQC

• Our paper: **VOQC**, a *Verified Optimizer for Quantum Circuits*, which is built on top of **SQIR**, a *Small Quantum Intermediate Representation* designed for proof

SQIR and VOQC

- SQIR and VOQC are implemented in around 11k lines of Coq code
 - 3.5k for core SQIR, source program proofs
 - 7.5k for VOQC libraries, optimizations, circuit mapper
 - We extend QWIRE's matrix & complex number libraries by 3k lines
- Long version of the paper available at https://arxiv.org/abs/1912.02250
- Code available at https://github.com/inQWIRE/SQIR
- Artifact available at https://zenodo.org/record/4268896

Outline

- Intro to Quantum Programming
- SQIR
- VOQC
- Future Work

Qubits

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{vmatrix} 0 \\ 1 \end{pmatrix}$$

$$\begin{vmatrix} \alpha \\ \alpha \end{vmatrix}^2 + |\beta|^2 = 1$$

Superposition: Qubits can be in multiple states (0 or 1) at once

Measurement

Measurement: Looking at a qubit probabilistically turns it into a bit.

Measurement

Measurement: Looking at a qubit probabilistically turns it into a bit.

Operators

A unitary operator transforms, or evolves, a state

$$H = |0\rangle = |+\rangle$$

$$+\rangle = |0\rangle$$

This is the *Hadamard* operator, H (which is its own inverse)

Operators

Operators are represented as unitary matrixes

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Multiple Qubits

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$

$$|+\rangle \otimes |0\rangle = |+\rangle |0\rangle$$
 or $|+0\rangle$

Multi-qubit states are constructed via the tensor product

Measurement 2.0

Measurement 2.0

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \stackrel{\frac{1}{2}}{\underbrace{}} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \\ |00\rangle \qquad |11\rangle$$

Entanglement

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad ? \otimes ?$$

Entangled qubits are not probabilistically independent—they cannot be decomposed. Connection at a distance!

Multi-Qubit Unitaries

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ \sqrt{2} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix}$$

More Unitaries

A *universal sets* of unitaries can be used to approximate any unitary operator using a finite sequence of gates

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{bit flip} \qquad \begin{array}{c} |0\rangle \mapsto |1\rangle \\ |1\rangle \mapsto |0\rangle \end{array}$$

$$Rz(\theta) = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$
 phase shift $\begin{vmatrix} |0\rangle \mapsto |0\rangle \\ |1\rangle \mapsto e^{i\theta}|1\rangle$

General Quantum States

- So far we have seen pure states
 - E.g. $|0\rangle, |1\rangle, |+\rangle$
- A mixed state is a (classical) probability distribution over pure states
 - ► E.g. | 0 | with probability 1/2
 | 1 | with probability 1/2
- Density matrices allow us to describe both pure and mixed states

$$\rho = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \qquad \qquad \rho = \frac{1}{2}|0\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| = \begin{pmatrix} 1/2 & 0 \\ 0 & 1/2 \end{pmatrix}$$

Circuits

Quantum programs are often written as circuits

Circuits

Quantum programs are often written as circuits

Circuits

Quantum programs are often written as circuits

Quantum Programming

Many "high-level" quantum programming languages (e.g. PyQuil, Cirq, Qiskit, Quipper, QWIRE) are libraries for constructing circuits

SQIR: Small Quantum Intermediate Representation

- SQIR programs, embedded in Coq, are assigned a denotational semantics of matrices
- Two variations of SQIR
 - Unitary SQIR: No measurement
 - Full SQIR: Adds branching measurement operator

Unitary SQIR

• Semantics parameterized by gate set G and dimension d of a global register

$$U := U_1; U_2 \mid G \mid G \mid G \mid q_1 \mid q_2$$

• The denotation (semantics) of U is a $2^d \times 2^d$ unitary matrix

E.g. $apply_1(X, q, d) = I_{2q} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes I_{2(d-q-1)}$

Non-Unitary SQIR

• Semantics parameterized by gate set G and dimension d of a global register

$$P \coloneqq \operatorname{skip} | P_1; \ P_2 | U | \operatorname{meas} q \ P_1 \ P_2$$

• The denotation of P is a function over $2^d \times 2^d$ density matrices

```
 \{ | skip \}_d(\rho) = \rho   \{ | P_1; P_2 \}_d(\rho) = (\{ | P_2 \}_d \circ \{ | P_1 \}_d)(\rho)   \{ | U \}_d(\rho) = [\![ U ]\!]_d \times \rho \times [\![ U ]\!]_d^{\dagger}   \{ | meas \ q \ P_1 \ P_2 \}_d(\rho) = \{ | P_2 \}_d(|0\rangle_q \langle 0| \times \rho \times |0\rangle_q \langle 0|)   + \{ | P_1 \}_d(|1\rangle_q \langle 1| \times \rho \times |1\rangle_q \langle 1|)
```

Standard semantics; also used in QHL¹ and QWIRE²

¹ Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.

² Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.

SQIR Metaprogramming

 SQIR programs just express circuits. We can express parameterized circuit families using Coq as a meta programming language


```
Fixpoint ghz (n : \mathbb{N}) : ucom base n := match n with \mid 0 \Rightarrow SKIP \mid 1 \Rightarrow H 0 \mid S n' \Rightarrow ghz n'; CNOT (n'-1) n' end.
```

The ghz Coq function returns a SQIR program (of type ucom base n) whose semantics is the n-qubit GHZ state

Proofs of Correctness in Coq

• We might like to prove that evaluating ghz n on $|0\rangle^{\otimes n}$ produces $|GHZ^n\rangle$

```
• where |GHZ^n\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} + |1\rangle^{\otimes n})
```

```
Definition GHZ (n : \mathbb{N}) : Vector (2 ^ n) := match n with \mid 0 \Rightarrow \text{I 1} \mid \text{S n'} \Rightarrow \frac{1}{\sqrt{2}} * \mid 0 \rangle^{\otimes n} + \frac{1}{\sqrt{2}} * \mid 1 \rangle^{\otimes n} end.

Lemma ghz_correct : \forall \text{ n : } \mathbb{N}, \text{n > 0 } \rightarrow [[\text{ghz n}]]_n \times |0\rangle^{\otimes n} = \text{GHZ n.}

Proof.

...
Qed.
```

Designed for Proof

- SQIR was conceived as a simplified version of QWIRE¹; we use QWIRE¹s libraries for matrices and complex numbers
- SQIR proofs are simpler that QWIRE's because we:
 - 1. Reference qubits using concrete indices (CNOT 2 1 vs. CNOT x y)
 - Easy to map gate arguments to the right column/row in the matrix
 - Disjointness is syntactic; important for proving equivalences
 - 2. Separate the unitary core from the full language with measurement
 - Unitary matrix semantics simpler than density matrix formulation
 - 3. Assign a denotation of the zero-matrix to ill-typed programs
 - E.g., CNOT 1 1, which violates no-cloning

¹Paykin, Rand and Zdancewic. QWIRE: A core language for quantum circuits. POPL 2017.

Proofs so Far

- We have formally verified several source programs correct
 - Quantum teleportation / superdense coding
 - GHZ state preparation
 - Deutsch-Jozsa algorithm
 - Simon's algorithm
 - Grover's search algorithm
 - Quantum phase estimation (key part of Shor's algorithm)
- These proofs as well as the basic support of SQIR (lemmas, tactics, etc.)
 constitute about 3500 lines of Coq code
- For more details see https://arxiv.org/abs/2010.01240

VOQC: A Verified Optimizer for Quantum Circuits

- Transformations are represented as Coq functions over SQIR circuits
 - Extracted to executable
 OCaml code
- We prove (verify) that transformations are semantics-preserving
 - Can also prove that the output program respects machine constraints

VOQC in Sum

- Most of VOQC (2200 LOC) consists of verified implementations of optimizations developed by Nam et al.¹
 - Replacement (peephole optimizations)
 - Propagation (commutation) and cancellation
 - Rotation merging (non-local coalescing)
- Some optimizations for non-unitary programs, inspired by Qiskit (800 LOC)
 - Remove z-rotations before measurement
 - Classical state propagation
- Another 2100 LOC for program manipulation; 2100 more for circuit mapping

Example: X Propagation

- Based on Nam et al¹ "not propagation"
- We verify semantics-preservation
 - At each step, the denotation of the program (i.e. unitary matrix) does not change
- We prove this via induction on the structure of the input program
 - ~30 lines to implement optimization
 - ~270 lines to prove semantics-preservation

¹Nam, Ross, Su, Childs and Maslov. *Automated Optimization of Large Quantum Circuits with Continuous Parameters*. npj 2018.

Verifying Matrix Equivalences

- Many proofs use unitary equivalences; e.g., X propagation's proof uses:
 - X gates cancel: $X m; X m \equiv I m$
 - ► X commutes with CNOT control: X m; $CNOT m n \equiv CNOT m n$; X m; X m
 - ► X commutes with CNOT target: X n; $CNOT m n \equiv CNOT m n$; X n
 - ► H transforms X to Z: $X m; H m \equiv H m; Z m$
- We prove these as lemmas
 - Doing so is tedious, so we developed Coq tactics to convert matrix expressions into a grid normal form to facilitate automation

Grid Normal Form

- Consider the equivalence X n; $CNOT m n \equiv CNOT m n$; X n
- Per our semantics, this requires proving

$$apply_1(X, n, d) \times apply_2(CNOT, m, n, d) = apply_2(CNOT, m, n, d) \times apply_1(X, n, d)$$

where

$$apply_1(X, n, d) = I_{2^n} \otimes \sigma_X \otimes I_{2^q}$$

$$apply_2(CNOT, m, n, d) = I_{2^m} \otimes |1\rangle\langle 1| \otimes I_{2^p} \otimes \sigma_X \otimes I_{2^q} + I_{2^m} \otimes |0\rangle\langle 0| \otimes I_{2^p} \otimes I_2 \otimes I_{2^q}$$

Our automation reduces both sides of the equality to grid normal form

$$I_{2m} \otimes |1\rangle\langle 1| \otimes I_{2p} \otimes I_{2} \otimes I_{2q} + I_{2m} \otimes |0\rangle\langle 0| \otimes I_{2p} \otimes \sigma_{x} \otimes I_{2q}$$

More Interesting: Rotation Merging

- Based on Nam et al rotation merging
- Combines Rz gates in arbitrary {Rz, CNOT} sub-circuits
 - ~100 lines to implement optimization
 - ~920 lines to prove semantics-preservation

Also: Circuit Mapping

- Given an input program & description of machine connectivity, *circuit mapping* produces a program that satisfies connectivity constraints
 - Usually uses SWAP gates to "move" qubits by exchanging their values

- ► E.g CNOT 0 2 , $0 \longrightarrow 1 \longrightarrow 2 \longrightarrow SWAP 0 1; CNOT 1 2$
- We prove that the output program is equivalent to the original, up to permutation of indices
 - ► Above, $[CNOT \ 0\ 2]_3 = P \times [SWAP \ 0\ 1; CNOT \ 1\ 2]_3$ where P implements the permutation $\{0 \to 1, \ 1 \to 0, \ 2 \to 2\}$

Evaluation

- 1 https://giskit.org/
- 2 https://cqcl.github.io/pytket/build/html/index.html
- 3 https://arxiv.org/pdf/1710.07345.pdf
- 4 https://arxiv.org/pdf/1303.2042.pdf
- 5 https://github.com/Quantomatic/pyzx

- Is VOQC any good? Maybe we just verified simple optimizations
- So: Compared our verified optimizer against existing unverified optimizers
 - ► IBM Qiskit Terra v0.15.12¹
 - Cambridge CQC tket v0.6.0²
 - ► Nam et al,³ both L and H levels (used by IonQ)
 - Amy et al⁴
 - PyZX v0.6.0⁵

Benchmark

- Used benchmark suite of Amy et al¹
 - 28 programs: Arithmetic circuits, implementations of multiple-control
 Toffoli gates, and Galois field multiplier circuits
 - Ranging from 45 to 13,593 gates and 5 to 96 qubits
 - Uses the Clifford+T gate set (CNOT, H, S and T)
- We measured effectiveness in terms of gate reductions
 - Both T gate and total
- Measured optimization time (not parsing or printing)

Results

- 1 https://qiskit.org/
- 2 https://cqcl.github.io/pytket/build/html/index.html 3 https://arxiv.org/pdf/1710.07345.pdf 4 https://arxiv.org/pdf/1303.2042.pdf

- 5 https://github.com/Quantomatic/pyzx

Geo. mean compilation times										
Q iskit ¹	tket ²	Nam ³ (L)	Nam (H)	Amy ⁴	PyZX ⁵	VOQC				
0.812s	0.129s	0.002s	0.018s	0.007s	0.384s	0.013s				

VOQC is the same ballpark

Geo. mean reduction in gate count								
Qiskit	tket	Nam (H)	VOQC					
10.1%	10.6%	24.8%	17.8%					

Geo mean. reduction in T gate count Nam (H) **VOQC PyZX** Amy 39.7% 42.6% 41.4% 41.4%

VOQC only outperformed by Nam

VOQC only outperformed by PyZX

No Bugs!

Bugs found in prior work^{1,2} via translation validation

	Total Gate Count						T-Gate Count						
Name	Original	Qiskit	t ket angle	Nam (L)	Nam (H)	VOQC	Name	Original	Amy	PyZX	Nam (L)	Nam (H)	voqc
adder_8	900	805	775	646	606	682	adder_8	399	215	173	215	215	215
barenco_tof_3	58	51	51	42	40	50	barenco_tof_3	28	16	16	16	16	16
barenco_tof_4	114	100	100	78	72	95	barenco_tof_4	56	28	28	28	28	28
barenco_tof_5	170	149	149	114	104	140	barenco_tof_5	84	40	40	40	40	40
barenco_tof_10	450	394	394	294	264	365	barenco_tof_10	224	100	100	100	160	100
csla_mux_3	170	156	155	161	155	158	csla_mux_3	70	62	62	64	64	64
csum_mux_9	420	382	361	294	266	308	csum_mux_9	196	112	84	84	84	84
gf2^4_mult	225	206	206	187	187	192	gf2^4_mult	112	68	68	68	68	68
gf2^5_mult	347	318	319	296	296	291	gf2^5_mult	175	111	115	115	115	115
gf2^6_mult	495	454	454	403	403	410	gf2^6_mult	252	159	150	150	150	150
gf2^7_mult	669	614	614	555	555	549	gf2^7_mult	343	217	217	217	217	217
gf2^8_mult	883	804	806	712	712	705	gf2^8_mult	448	264	264	264	264	264
gf2^9_mult	1095	1006	1009	891	891	885	gf2^9_mult	567	351	351	351	351	351
gf2^10_mult	1347	1238	1240	1070	1070	1084	gf2^10_mult	700	410	410	410	410	410
gf2^16_mult	3435	3148	3150	2707	2707	2695	gf2^16_mult	1792	1040	1040	1040	1040	1040
gf2^32_mult	13593	12506	12507	10601	10601	10577	gf2*32_mult	7168	4128	4128	4128	4128	4128
$mod5_4$	63	58	58	51	51	56	mod5_4	28	16	8	16	16	16
mod_mult_55	119	106	102	91	91	90	mod_mult_55	49	37	35	35	3 5	35
${ m mod_red_21}$	278	227	224	184	180	214	mod_red_21	119	73	73	73	73	73
qcla_adder_10	521	469	460	411	399	438	qcla_adder_10	238	162	162	162	162	164
qcla_com_7	443	398	392	284	284	314	qcla_com_7	203	95	95	95	95	95
qcla_mod_7	884	793	780	636	624	723	qcla_mod_7	413	249	237	237	235	249
rc_adder_6	200	170	172	142	140	157	rc_adder_6	77	63	47	47	47	47
tof_3	45	40	40	35	35	40	tof_3	21	15	15	15	15	15
tof_4	75	66	66	55	55	65	tof_4	35	23	23	23	23	23
tof_5	105	92	92	75	75	90	tof_5	49	31	31	31	31	31
tof_10	255	222	222	175	175	215	tof_10	119	71	71	71	71	71
vbe_adder_3	150	138	139	89	89	101	vbe_adder_3	70	24	24	24	24	24
Geo. Mean Reduction	_	10.1%	10.6%	23.3%	24.8%	17.8%	Geo. Mean Reduction	_	39.7%	42.6%	41.4%	41.4%	41.4%

¹ Nam, Ross, Su, Childs and Maslov. *Automated Optimization of Large Quantum Circuits with Continuous Parameters*. npj 2018.

² Kissinger and van de Wetering. *PyZX: Large scale automated diagrammatic reasoning*. QPL 2019.

Summary and Future Work

- SQIR and VOQC: Two building blocks of a verified quantum software stack
 - Powerful enough to verify state-of-the-art optimizations, and prove source programs correct (QPE; Grover's)
 - Resulted in novel frameworks, libraries, automation for quantum program proofs

