Expanding the VOQC Toolkit

Kesha Hietalat LiyiLit Akshaj Gaurz Aaron Green'
Robert Rands Xiaodi Wu Michael Hicks'

TUniversity of Maryland 2 Poolesville High School 3 University of Chicago

VOQC: Verified Optimizer for Quantum Circuits

* An optimizer for quantum circuits formally verified in the Coq proof assistant

- Optimizations are proved to be semantics preserving, i.e., they do not
change the “meaning” of the input circuit

» Circuits expressed in SQIR, a Simple Quantum Intermediate Representation

 VOQC and SQIR were presented in a distinguished paper at POPL 2021

* Followup paper to appear at |TP 2021 shows how to use SQIR as a source
language for verifying quantum algorithms (e.g. Grover’s, QPE)

https://dl.acm.org/doi/10.1145/3434318
https://arxiv.org/pdf/2010.01240.pdf

VOQC: Verified Optimizer for Quantum Circuits

OpenQASM * SQIR circuit

Gate
decomposition

f

Output uses gates
In the desired set
Circuits are
equivalent

Output satisfies
arch. constraints

Circuit mapping &
OpenQASM ‘ SQIR circuit

: Optimization

In This Talk

» New gate sets and optimizations @ QISkIt

o Better support for circuit mapping ,{&'

e |nteroperability (via Python) @

“IBM” Gate Set

 Consists of the gates {U1, U2, U3, CX]}

o U1, U2, U3 are parameterized by real rotation angles

1 _eit cos(6 —esin(0/2
Ui(A) = ((1) e(i)’l)’ U2(¢,4) = NG (;cﬁ ei(¢+A))’ Us(0,4,4) = (e"¢ Si(n(/92/)2) e!(9+4) co(s(/e/)z))

Qiskit’s Optimize1qgGates
* Finds adjacent single-qubit gates (U1, U2, U3) and combines them

- Eg merging U1, U2 Ul(Al);Ul (/12) — Usq (/11 +/12)
U1(41); U2(4,42) = Uz (A2, A1 + ¢)

- More complicated: merging U3

U3 (01, 01,41);U3(02,92,42) =Rz(¢2) - Ry(62) - Rz(A2) - Rz(¢1) - Ry(61) - Rz(A1)
=Rz(¢2) - [Ry(02) - Rz (A2 + ¢1) - Ry(61)] - Rz(A1)

Note: =Rz(¢2) Rz Y RH ﬂ 'Rz 94 ’Rz /1]_
Us(0, $, 1) = R($) - R(0) - R.(2) =Rz(¢2 +v) - Ry(B) - Rz(a + A1)
for rotations R, R, = Us (.B’ P2 +y,a+ ’11)

The hard part is yzy — ZyZz conversion

0

Summary of Features

o (Gate sets
- “RzQ” {X, H, Rz, CX}
- “IBM” {U1, U2, U3, CX}
- “Ful’ {l, X, Y, Z, ..., CX, CZ, SWAP, CCX, CCZ}

e Optimizations

- Five passes from Nam et al. [2018] (evaluated in our POPL paper)

- Optimize1gGates and CXCancellation from Qiskit

e Simple circuit mapping

https://www.nature.com/articles/s41534-018-0072-4
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.Optimize1qGates.html
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.CXCancellation.html

Circuit Mapping

CX 0 2
CX 0 2
+ o 1 3 * SWAP 1 2

CX 2 3

(with the positions of qubits
1 and 2 swapped)

e We want this transformation to...

- Be semantics-preserving (the two programs should be denoted by the
same matrix, up to a permutation of qubits)

- Produce an output that satisfies the architecture’s constraints

Composing VOQC Transformations

 Coq program to optimize a circuit and then map it to a 10-qubit LNN
architecture (OCaml syntax is similar)

Definition optimize_then_map c :=

let gr := make_lnn 10 in (* 10-qubit LNN architecture *)
let la := trivial_layout 10 in (* trivial layout on 10 qubits *)
if check_well_typed c 10 (* check that c is well-typed & uses <10 qubits *)
then
let ¢' := optimize_nam c in (x optimization #1 *)
let c¢'' := optimize_ibm c¢' in (* optimization #2 *)
Some (simple_map c'' la gr) (* map *)

else None.

Composing VOQC Transformations

 Coq program to map a circuit to a 10-qubit LNN architecture and then
perform optimization (OCaml syntax is similar)

Definition map_then_optimize c :=

let gr := make_lnn 10 in (* 10-qubit LNN architecture *)
let la := trivial_layout 10 in (* trivial layout on 10 qubits *)
if check_well_typed c 10 (* check that ¢ is well-typed & uses <10 qubits *)
then
let (c¢c', la') := simple_map c¢ la gr in (* map *)
let c¢'' := optimize_nam c' in (* optimization #1 *)
Some (optimize_ibm c'', la') (* optimization #2 *)

else None.

* To support optimization after mapping, we prove that all optimizations are
mapping preserving

10

(Light) Evaluation

Is it better to optimize or map first?

We mapped 26 arithmetic circuits to a 6x6 2D grid architecture (= 36 qubits)
and compared the gate count reduction due to optimizing before vs. after

Optimize -> Map Map -> Optimize Optimize -> Map -> Optimize

10.4% 8.6% 10.9%

A verified optimizer allows us to combine different transformations without
worrying about correctness

In our POPL paper: evaluation on a larger set of benchmarks; comparison
with PyZX, Qiskit, and tket

11

PyVOQC

 We want to make VOQC a drop-in replacement for circuit optimizers used
in frameworks like Qiskit, pytket, pyQuil, Cirg (all written in Python)

e So we added Python bindings for VOQC optimizations

extracted to compiled to called from
Verified Coq Definitions S Executable OCamli S C Library —— | Python Interface

12

PyVOQC

from giskit import QuantumCircuit
from pyvoqc.qgiskit.vogc pass import QiskitVOQC
from giskit.transpiler import PassManager

create a circuit using Qiskit's interface
circ = QuantumCircuit(2)
circ.x(0)

circ.t (0)

circ.t (1)

circ.cz (0, 1)

circ.t (0)

circ.tdg(1l)

print ("Before Optimization:")
print (circ)

#F create a Qiskit PassManager
pm = PassManager ()

’ ~

- P =T alarttelaTal~F— p—_— =
T, Ll -

) R wr VAN U \

-
- - " & Uda

pm.append (QiskitVOQC (["decompose to cnot"]))
new circ = pm.run(circ)

print ("\n\nAfter 'decompose to cnot':")
print (new circ)

-~ . - s v - e o - = o s oo AT = »9 —
Yo ~ -— " T N » N NI - .

¥
y] | | [| J :
- L4dd VAN OALINL LG UL V4 - AL LAV CRiil - L L L o

pm.append (QiskitVOQC(["optimize nam",
new circ = pm.run(circ)

print ("\n\nAfter 'optimize nam':")
print (new circ)

pog ¥ BM ~at+o moarrsrs Moy
o -~ Lddd - LOL"S JL‘A N - L=l SR O S SF AW

pm.append (QiskitVOQC (["optimize ibm"]))
new circ = pm.run(circ)

AR =

print ("\n\nAfter 'optimize ibm':")
rint (new circ)
P — 12

Before Optimization:

| || | [|
g0:{xHT = T

: | J Il l]
gl: 4T & TDG |

L] |]

After 'decompose to cnot':

| | | |
g0:{xHT | T
- lll | |
gl:{ THeHxH&uEH TG }
11] L] L | | |

After 'optimize nam':

g 0: u rsoc 1|--I xi-
e {rxH e H e

After 'optimize ibm':

| |
g 0: ®— U3(pi,0,pi/2) }
| || . II | | I
g l: 4 v2(0,pi) H % U2 (pi,pi) p—
|] | J | |

Ongoing Work

More thorough evaluation of VOQC (e.g. using Arline's benchmarks)
New optimizations, especially approximate
More sophisticated mapping & mapping-aware optimizations

In progress: Compilation from classical (reversible) programs to SQIR
circuits

13

https://github.com/ArlineQ/arline_benchmarks

Resources

Our Coq definitions and proofs are available at github.com/inQWIRE/
SQIR.

Our OCaml library is available at github.com/iInQWIRE/mlvogc and can be
installed with “opam install voqc”.

- Documentation on the OCaml library interface is available at https://
iIngwire.qgithub.io/mlvogc/voagc/Voqgc/index.htmil.

Our Python bindings and a tutorial are available at github.com/inQWIRE/
pyvoqQc.

We welcome contributions! Feel free to file issues or pull requests.

14

https://github.com/inQWIRE/SQIR
https://github.com/inQWIRE/SQIR
https://github.com/inQWIRE/mlvoqc
https://inqwire.github.io/mlvoqc/voqc/Voqc/index.html
https://inqwire.github.io/mlvoqc/voqc/Voqc/index.html
https://github.com/inQWIRE/pyvoqc
https://github.com/inQWIRE/pyvoqc

Slides for Live Presentation

PyVOQC Tutorial

 Assuming you have working installations of pip (for Python 3) and opam

pip 1install jupyter giskit
opam install vogc.0.2.1

git clone https://github.com/inQWIRE/pyvogc
cd pyvoqgc

./install.sh

Jjupyter notebook plangc tutorial.ipynb

» Alternatively, view the notebook on GitHub or at https://nbviewer.jupyter.org/
aithub/inQWIRE/pyvoqgc/blob/main/plangc tutorial.ipynb

16

https://nbviewer.jupyter.org/github/inQWIRE/pyvoqc/blob/main/planqc_tutorial.ipynb
https://nbviewer.jupyter.org/github/inQWIRE/pyvoqc/blob/main/planqc_tutorial.ipynb
https://nbviewer.jupyter.org/github/inQWIRE/pyvoqc/blob/main/planqc_tutorial.ipynb
https://github.com/inQWIRE/pyvoqc

: Ju pyte I planqc_tutorial Last Checkpoint: 3 hours ago (autosaved) a Logout

File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O

+ < @ E ¢ * » Run . c » Markdown v

PyVOQC Tutorial (PLanQC 2021)

This tutorial introduces PyVOQC, the Python bindings for the VOQC optimizer (available at inQWIRE/pyvogc). We first show how to use PyVOQC as a pass in
Qiskit (our recommended method), and then show how to call PyVOQC functions directly.

Preliminaries

To run this tutorial:

1. Install our OCaml package with opam install vogc (requires opam)
2. Run ./install.sh inthe pyvoqc directory

For more details and troubleshooting, see the README in the pyvoqc repository.

Running PyVOQC as a Qiskit Pass

Using our vogc_pass wrapper, VOQC can be called just like any other optimization pass in IBM's Qiskit framework. This allows us to take advantage of
Qiskit's utilities for quantum programming, such as the ability to build and print circuits.

To use VOQC, simply append QiskitVOQC([opt list]) to aQiskit Pass Manager where opt list is an optional argument specifying one or more
of the transformations in VOQC. QiskitVv0oQC () with no arguments will run all available optimizations.

In [1]: from giskit import QuantumCircuit
from pyvoqc.qgiskit.voqc pass import QiskitVOQC
from giskit.transpiler import PassManager

create a circuilt using Qiskit's interface
circ = QuantumCircuit(2)

—me eamm e=df NN

17

Arline Benchmarking

* Arline Benchmarks is an open-source automated benchmarking platform
for guantum compilers

* Considers a variety of benchmarks, target architectures

 Considers total gate count & depth, single-qubit gate count & depth,
two-qubit gate count & depth, execution time

* Auto-generated reports available for Cirg, pytket, PyZX, Qiskit... and soon
VOQC!

 For more details see https://www.arline.io/

18

https://github.com/ArlineQ/arline_benchmarks
https://www.arline.io/

IbmAIlI2AII16Q

Preliminary Results

random_chain_clifford_t 16q_300 comparator_qgasm_circuits grover_gasm_circuits finance _gasm_circuits quant_dynamics_qgasm_circuits

{H, X, Rz, CX} {Rx, Rz, CX}
{X, CX, CCX} {U1, U3, CX}
VOQC is competitive VOQC underperforms

« Takeaway: we still have a lot to do! But we are optimistic that we can
build a formally verified compiler that includes all the optimizations in
leading compilers — without the bugs!

19

chemistry_qasm_circuits

Resources

Code:
- qgithub.com/iInQWIRE/SQIR
- github.com/inQWIRE/mlvoqgc

- qithub.com/inQWIRE/pyvoqgc

POPL 2021 paper: dl.acm.org/doi/10.1145/3434318

SIGPLAN blog post: blog.sigplan.org/2021/06/02/veritying-a-quantum-compiler/

Contact kesha@cs.umd.edu or rand@uchicago.edu with comments or questions!

20

https://github.com/inQWIRE/SQIR
https://github.com/inQWIRE/mlvoqc
https://github.com/inQWIRE/pyvoqc
https://dl.acm.org/doi/10.1145/3434318
https://blog.sigplan.org/2021/06/02/verifying-a-quantum-compiler/
mailto:kesha@cs.umd.edu
mailto:rand@uchicago.edu

