
Expanding the VOQC Toolkit

Kesha Hietala1 Liyi Li1 Akshaj Gaur2 Aaron Green1

Robert Rand3 Xiaodi Wu1 Michael Hicks1

1

1 University of Maryland 2 Poolesville High School 3 University of Chicago

VOQC: Verified Optimizer for Quantum Circuits

• An optimizer for quantum circuits formally verified in the Coq proof assistant

- Optimizations are proved to be semantics preserving, i.e., they do not

change the “meaning” of the input circuit

• Circuits expressed in SQIR, a Simple Quantum Intermediate Representation

• VOQC and SQIR were presented in a distinguished paper at POPL 2021

• Followup paper to appear at ITP 2021 shows how to use SQIR as a source
language for verifying quantum algorithms (e.g. Grover’s, QPE)

2

https://dl.acm.org/doi/10.1145/3434318
https://arxiv.org/pdf/2010.01240.pdf

VOQC: Verified Optimizer for Quantum Circuits

3

Circuits are
equivalent

Output satisfies
arch. constraints

Output uses gates
in the desired set

SQIR circuitOpenQASM

Gate
decomposition

Optimization

Circuit mapping

SQIR circuitOpenQASM

In This Talk

• New gate sets and optimizations

• Better support for circuit mapping

• Interoperability (via Python)

4

“IBM” Gate Set

• Consists of the gates {U1, U2, U3, CX}

• U1, U2, U3 are parameterized by real rotation angles

5

Qiskit’s Optimize1qGates

6

The hard part is conversionyzy → zyz

• Finds adjacent single-qubit gates (U1, U2, U3) and combines them

- E.g. merging U1, U2

- More complicated: merging U3

Note:

for rotations
U3(θ, ϕ, λ) = Rz(ϕ) ⋅ Ry(θ) ⋅ Rz(λ)

Ry, Rz

Summary of Features
• Gate sets

- “RzQ” {X, H, Rz, CX}

- “IBM” {U1, U2, U3, CX}

- “Full” {I, X, Y, Z, …, CX, CZ, SWAP, CCX, CCZ}

• Optimizations

- Five passes from Nam et al. [2018] (evaluated in our POPL paper)

- Optimize1qGates and CXCancellation from Qiskit

• Simple circuit mapping

7

https://www.nature.com/articles/s41534-018-0072-4
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.Optimize1qGates.html
https://qiskit.org/documentation/stubs/qiskit.transpiler.passes.CXCancellation.html

Circuit Mapping

• We want this transformation to…

- Be semantics-preserving (the two programs should be denoted by the
same matrix, up to a permutation of qubits)

- Produce an output that satisfies the architecture’s constraints

8

CX 0 2
CX 1 3

1

20

4

3
 CX 0 2
SWAP 1 2
 CX 2 3

(with the positions of qubits
1 and 2 swapped)

Composing VOQC Transformations
• Coq program to optimize a circuit and then map it to a 10-qubit LNN

architecture (OCaml syntax is similar)

9

• Coq program to map a circuit to a 10-qubit LNN architecture and then
perform optimization (OCaml syntax is similar)

• To support optimization after mapping, we prove that all optimizations are
mapping preserving

Composing VOQC Transformations

10

(Light) Evaluation
• Is it better to optimize or map first?

• We mapped 26 arithmetic circuits to a 6x6 2D grid architecture (= 36 qubits)
and compared the gate count reduction due to optimizing before vs. after

• A verified optimizer allows us to combine different transformations without
worrying about correctness

• In our POPL paper: evaluation on a larger set of benchmarks; comparison
with PyZX, Qiskit, and tket

11

Optimize -> Map Map -> Optimize Optimize -> Map -> Optimize

10.4% 8.6% 10.9%

PyVOQC

12

• We want to make VOQC a drop-in replacement for circuit optimizers used
in frameworks like Qiskit, pytket, pyQuil, Cirq (all written in Python)

• So we added Python bindings for VOQC optimizations

Verified Coq Definitions Executable OCaml C Library Python Interface
extracted to compiled to called from

PyVOQC

12

Ongoing Work

• More thorough evaluation of VOQC (e.g. using Arline's benchmarks)

• New optimizations, especially approximate

• More sophisticated mapping & mapping-aware optimizations

• In progress: Compilation from classical (reversible) programs to SQIR
circuits

13

https://github.com/ArlineQ/arline_benchmarks

Resources
• Our Coq definitions and proofs are available at github.com/inQWIRE/

SQIR.

• Our OCaml library is available at github.com/inQWIRE/mlvoqc and can be
installed with “opam install voqc”.

- Documentation on the OCaml library interface is available at https://

inqwire.github.io/mlvoqc/voqc/Voqc/index.html.

• Our Python bindings and a tutorial are available at github.com/inQWIRE/
pyvoqc.

• We welcome contributions! Feel free to file issues or pull requests.

14

https://github.com/inQWIRE/SQIR
https://github.com/inQWIRE/SQIR
https://github.com/inQWIRE/mlvoqc
https://inqwire.github.io/mlvoqc/voqc/Voqc/index.html
https://inqwire.github.io/mlvoqc/voqc/Voqc/index.html
https://github.com/inQWIRE/pyvoqc
https://github.com/inQWIRE/pyvoqc

Slides for Live Presentation

15

PyVOQC Tutorial
• Assuming you have working installations of pip (for Python 3) and opam

• Alternatively, view the notebook on GitHub or at https://nbviewer.jupyter.org/
github/inQWIRE/pyvoqc/blob/main/planqc_tutorial.ipynb

16

install utilities
pip install jupyter qiskit
opam install voqc.0.2.1

download and install pyvoqc
git clone https://github.com/inQWIRE/pyvoqc
cd pyvoqc
./install.sh
jupyter notebook planqc_tutorial.ipynb

https://nbviewer.jupyter.org/github/inQWIRE/pyvoqc/blob/main/planqc_tutorial.ipynb
https://nbviewer.jupyter.org/github/inQWIRE/pyvoqc/blob/main/planqc_tutorial.ipynb
https://nbviewer.jupyter.org/github/inQWIRE/pyvoqc/blob/main/planqc_tutorial.ipynb
https://github.com/inQWIRE/pyvoqc

17

Arline Benchmarking
• Arline Benchmarks is an open-source automated benchmarking platform

for quantum compilers

• Considers a variety of benchmarks, target architectures

• Considers total gate count & depth, single-qubit gate count & depth,
two-qubit gate count & depth, execution time

• Auto-generated reports available for Cirq, pytket, PyZX, Qiskit… and soon
VOQC!

• For more details see https://www.arline.io/

18

https://github.com/ArlineQ/arline_benchmarks
https://www.arline.io/

Preliminary Results

• Takeaway: we still have a lot to do! But we are optimistic that we can
build a formally verified compiler that includes all the optimizations in
leading compilers — without the bugs!

19

{H, X, Rz, CX}

{X, CX, CCX}

VOQC is competitive

{Rx, Rz, CX}

{U1, U3, CX}

VOQC underperforms

Resources
• Code:

- github.com/inQWIRE/SQIR

- github.com/inQWIRE/mlvoqc

- github.com/inQWIRE/pyvoqc

• POPL 2021 paper: dl.acm.org/doi/10.1145/3434318

• SIGPLAN blog post: blog.sigplan.org/2021/06/02/verifying-a-quantum-compiler/

• Contact kesha@cs.umd.edu or rand@uchicago.edu with comments or questions!

20

https://github.com/inQWIRE/SQIR
https://github.com/inQWIRE/mlvoqc
https://github.com/inQWIRE/pyvoqc
https://dl.acm.org/doi/10.1145/3434318
https://blog.sigplan.org/2021/06/02/verifying-a-quantum-compiler/
mailto:kesha@cs.umd.edu
mailto:rand@uchicago.edu

