
Proving Quantum Programs Correct

ITP 2021

Kesha Hietala
University of Maryland

kesha@cs.umd.edu

Robert Rand

University of Chicago

rand@uchicago.edu

Shih-Han Hung

University of Maryland

shung@umd.edu

Liyi Li

University of Maryland

liyili2@umd.edu

Michael Hicks

University of Maryland

mwh@cs.umd.edu

1

mailto:kesha@cs.umd.edu
mailto:rand@uchicago.edu
mailto:shung@umd.edu
mailto:liyili2@umd.edu
mailto:mwh@cs.umd.edu

Image from https://www.ibm.com/quantum-computing/

https://www.ibm.com/quantum-computing/

Writing Quantum Programs is Hard
• Quantum indeterminacy quantum programs are probabilistic⇒

• Quantum programs are written as circuits

• Quantum programs use new primitives

- E.g. “prepare a uniform superposition”, “perform a Fourier transform”

3

Writing (Correct) Quantum Programs is Hard

• In general
- What is “correct?” Answer may be approximate
- Breakpoints break things (opening the box kills the cat)
- Simulating quantum programs is intractable

• In the near term
- Computing resources (e.g., qubits) are scarce

- Execution is error prone

Formal verification can help!

4

SQIR
• SQIR is a Simple Quantum Intermediate Representation for expressing

quantum circuits + libraries for reasoning about quantum programs in the
Coq Proof Assistant

• Presented as the intermediate representation of a verified compiler (à la
CompCert) at POPL 2021 (arxiv:1912.02250)

• Our ITP paper looks at using SQIR as a source language for verified
quantum programming

• Code available at github.com/inQWIRE/SQIR

5

https://arxiv.org/pdf/1912.02250.pdf
https://github.com/inQWIRE/SQIR

This Talk

• Intro to Quantum

• SQIR Syntax & Semantics

• Proof Engineering

• Results

6

(1
0) (0

1)(α
β)

|α |2 + |β |2 = 1
Superposition: Qubits can be in multiple states (0 or 1) at once

∣0⟩ ∣1⟩

Qubits

7

(α
β)

(1
0)

|α |2

(0
1)

|β |2

Measurement: Looking at a qubit probabilistically turns it into a bit.

Measurement

8

∣0⟩ ∣1⟩

(1
0) (0

1)
Measurement: Looking at a qubit probabilistically turns it into a bit.

Measurement

9

()
1
2

1
2

1
2

2
= 1

2
1
2

2
= 1

2

∣0⟩ ∣1⟩

|+⟩ state

=

Operators

H

H

A unitary operator transforms, or evolves, a state

This is the Hadamard operator, H
(which is its own inverse)

10

∣0⟩ |+⟩

∣0⟩|+⟩ =

1
2 (1 1

1 −1)
1
2 (1 1

1 −1)
(1

0)
(1

0)
()

1
2

1
2

()
1
2

1
2

Operators are represented as unitary matrixes

Operators

11

=

=

0
0

1
2

1
2

1
2

1
2

1
0
0
0

0
0
0
1

Measurement 2.0

13

0
0

1
2

1
2

1
2

1
2

(1
0) ⊗ (1

0) (0
1) ⊗ (0

1)
|00⟩ |11⟩

Measurement 2.0

13

0
0

1
2

1
2

Entangled qubits are not probabilistically independent —

they cannot be decomposed. Connection at a distance!

? ⊗ ?

Entanglement

14

0

0

1
2

1
2

() ⊗ (1
0)

1
2

1
2

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

0
0

1
2

1
2

=0

0

1
2

1
2

CNOT |+ 0⟩ 1
2

(∣ 00⟩ + ∣ 11⟩)=

Multi-Qubit Unitaries

15

General Quantum States
• So far we have seen pure states

‣ E.g. , ,

• A mixed state is a (classical) probability distribution over pure states

‣ E.g. with probability 1/2

 with probability 1/2

• Density matrices allow us to describe both pure and mixed states

16

ρ = 1
2 |0⟩⟨0 | + 1

2 |1⟩⟨1 | = (1/2 0
0 1/2)

|0⟩
|1⟩

ρ = |0⟩⟨0 | = (1 0
0 0)

|0⟩ |1⟩ |+⟩

CircuitsCircuits

17

Quantum programs are often written as circuits

H 0
CNOT 0 1
CNOT 1 2

This Talk

• Intro to Quantum

• SQIR Syntax & Semantics

• Proof Engineering

• Results

18

Unitary SQIR
• Semantics parameterized by gate set G and dimension d of a global register

• The denotation (semantics) of U is a unitary matrix2d × 2d

19

E.g.

apply1(X, q, d) =
I2q ⊗ ⊗ I2(d−q−1)

q1 < d ∧ q2 < d ∧ q1 ≠ q2

q < d

(0 1
1 0)

• Semantics parameterized by gate set G and dimension d of a global register

• The denotation of P is a function over density matrices2d × 2d

Non-Unitary SQIR

20

Standard semantics;
also used in QHL1

and QWIRE2

1 Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.

2 Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.

SQIR Metaprogramming
• SQIR programs just express circuits. We can express parameterized

circuit families using Coq as a meta programming language

• The ghz Coq function returns a SQIR program (of type ucom base n)
whose semantics is the n-qubit GHZ state

21

|0⟩ H
. .

.
|0⟩
|0⟩

|0⟩
|0⟩

. .
.

Proofs of Correctness in Coq
• We might like to prove that evaluating ghz n on produces

- where
|0⟩⊗n |GHZn⟩

22

...

|GHZn⟩ = 1
2

(|0⟩⊗n + |1⟩⊗n)

This Talk

• Intro to Quantum

• SQIR Syntax & Semantics

• Proof Engineering

• Results

23

the focus of our paper

SQIR Design Highlights
• Reference qubits using concrete indices (CNOT (n-1) n vs. CNOT x y)

- Semantics just maps to the proper column/row in the matrix

- Disjointness is syntactic; important for well-formedness

• Separate the unitary core from the full language with measurement

- Unitary matrix semantics simpler than density matrix formulation (but

can use the latter when needed)

- Allows representing quantum state using a vector, which enables better

automation

• See our paper for more!

24

Vector States
• apply1 and apply2 become unwieldy for expressions with many qubits

- We provide automation for simplifying products of apply terms to
grid normal form

- But the normalized terms can be quite large & have many cases to
account for different orderings of qubit arguments

25

apply1(X, q, d) = I2q ⊗ (0 1
1 0) ⊗ I2(d−q−1)

 for I2q1 ⊗ (0 0
0 1) ⊗ I2q2−q1−1 ⊗ (0 1

1 0) ⊗ I2d−q2−1 + I2q1 ⊗ (1 0
0 0) ⊗ I2d−q1−1 q1 < q2

apply2(CNOT, q1, q2, d) =
 for I2q2 ⊗ (0 0

0 1) ⊗ I2q1−q2−1 ⊗ (0 1
1 0) ⊗ I2d−q1−1 + I2q2 ⊗ (1 0

0 0) ⊗ I2d−q2−1 q2 < q1

Vector States
• It’s simpler to describe a unitary gate by its effect on basis vectors

• Basis vectors alone aren’t enough to represent all quantum states
 we provide a construct for describing sums over vectors→

• Measurement is not unitary
 we provide measurement predicates like probability_of_outcome→

26

X a: ∣ . . . x . . . ⟩ ↦ ∣ . . . (¬x) . . . ⟩
CNOT a b : ∣ . . . x . . . y . . . ⟩ ↦ ∣ . . . x . . . (x ⊕ y) . . . ⟩

Related Work
• QWIRE [Rand et al., QPL 2017]

- Implemented in Coq

- Used to verify simple randomness generation circuits and small examples

• QBRICKS [Chareton et al., ESOP 2021]

- Implemented in Why3

- Used to verify Grover’s algorithm and Quantum Phase Estimation

• Quantum Hoare Logic (QHL) [Liu et al., CAV 2019]

- Implemented in Isabelle/HOL

- Used to verify Grover’s algorithm

27

Related Work

SQIR is flexible, supporting multiple semantics and approaches to proof

28

QWIRE QBRICKS QHL SQIR

Uses concrete indices

Special support for
unitary programs

General support for
measurement

This Talk

• Intro to Quantum

• SQIR Syntax & Semantics

• Proof Engineering

• Results

29

Proofs so Far
• We have formally verified several source programs correct

- Quantum teleportation / superdense coding
- GHZ state preparation
- Deutsch-Jozsa algorithm
- Simon’s algorithm
- Grover’s search algorithm
- Quantum phase estimation

• These proofs constitute about 3.5k lines of Coq (core of SQIR is 3.9k)

• Our specifications and proofs follow the standard textbook arguments

30

Example: QPE

• Quantum Phase Estimation: given a circuit implementing some unitary and
an state such that , find

- The key “quantum” part of Shor’s factoring algorithm

- The most sophisticated quantum algorithm verified by any current tool

U
∣ ψ⟩ U ∣ ψ⟩ = e2πiθ ∣ ψ⟩ θ

• The SQIR implementation is 40 lines and the proof is 1000 lines

- Proof completed in two person-weeks

31

parameterized by U, k, n

Example: QPE
• Correctness property in the case where can be represented using

exactly k bits (call this representation z):
θ

• Conclusion says that the running QPE on the input
produces z in the first k bits

∣ 00...0⟩ ⊗ ∣ ψ⟩

32

Example: QPE
• If can not be exactly expressed using k bits, we get an approximation

within of the true value with probability at least
θ

1
2k+1

4
π2 ≈ 0.41

33

Future Directions
• Extract verified SQIR programs to executable OpenQASM circuits

- Requires careful thought about gate sets and the implementation of
“control” and “adjoint” functions to produce reasonably efficient code

• Verify near-term quantum algorithms

- Requires better handling for approximate algorithms

- May need to account for errors requires density matrices→

• Higher-level abstractions for describing quantum programs and
specifications?

34

Conclusions
• Formal verification for quantum programs is a recent area of interest

- Recent work includes QWIRE, QBRICKS, QHL

- SQIR is one of the most successful examples to date

- This is an open field!

• GitHub repository: github.com/inQWIRE/SQIR

• Full version of the ITP paper: arxiv:2010.01240

• POPL 2021 paper on optimizing SQIR programs: arxiv:1912.02250

35

Pull requests welcome!

https://github.com/inQWIRE/SQIR
https://arxiv.org/pdf/2010.01240.pdf
https://arxiv.org/pdf/1912.02250.pdf

