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Writing Quantum Programs is Hard
• Quantum indeterminacy  quantum programs are probabilistic⇒

• Quantum programs are written as circuits

• Quantum programs use new primitives

- E.g. “prepare a uniform superposition”, “perform a Fourier transform”
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Writing (Correct) Quantum Programs is Hard

• In general
- What is “correct?” Answer may be approximate
- Breakpoints break things (opening the box kills the cat)
- Simulating quantum programs is intractable

• In the near term
- Computing resources (e.g., qubits) are scarce

- Execution is error prone

Formal verification can help!
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SQIR
• SQIR is a Simple Quantum Intermediate Representation for expressing 

quantum circuits + libraries for reasoning about quantum programs in the 
Coq Proof Assistant

• Presented as the intermediate representation of a verified compiler (à la 
CompCert) at POPL 2021 (arxiv:1912.02250)

• Our ITP paper looks at using SQIR as a source language for verified 
quantum programming

• Code available at github.com/inQWIRE/SQIR
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https://arxiv.org/pdf/1912.02250.pdf
https://github.com/inQWIRE/SQIR


This Talk

• Intro to Quantum 

• SQIR Syntax & Semantics


• Proof Engineering


• Results
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Superposition: Qubits can be in multiple states (0 or 1) at once
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Qubits
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Measurement: Looking at a qubit probabilistically turns it into a bit.

Measurement
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Operators

H

H

A unitary operator transforms, or evolves, a state 

This is the Hadamard operator, H
(which is its own inverse)
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Operators are represented as unitary matrixes

Operators
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Entangled qubits are not probabilistically independent —

they cannot be decomposed. Connection at a distance!
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Entanglement
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Multi-Qubit Unitaries
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General Quantum States
• So far we have seen pure states 

‣ E.g.         ,      ,

• A mixed state is a (classical) probability distribution over pure states


‣ E.g.            with probability 1/2

                       with probability 1/2

• Density matrices allow us to describe both pure and mixed states
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ρ = 1
2 |0⟩⟨0 | + 1

2 |1⟩⟨1 | = (1/2 0
0 1/2)

|0⟩
|1⟩

ρ = |0⟩⟨0 | = (1 0
0 0)
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CircuitsCircuits
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Quantum programs are often written as circuits

H 0
CNOT 0 1
CNOT 1 2



This Talk

• Intro to Quantum


• SQIR Syntax & Semantics 

• Proof Engineering


• Results
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Unitary SQIR
• Semantics parameterized by gate set G and dimension d of a global register

• The denotation (semantics) of U is a    unitary matrix2d × 2d
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E.g.  

           

apply1(X, q, d) =
I2q ⊗ ⊗ I2(d−q−1)

q1 < d ∧ q2 < d ∧ q1 ≠ q2

q < d

(0 1
1 0)



• Semantics parameterized by gate set G and dimension d of a global register

• The denotation of P is a function over    density matrices2d × 2d

Non-Unitary SQIR
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Standard semantics; 
also used in QHL1 

and QWIRE2 

1 Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.

2 Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.



SQIR Metaprogramming
• SQIR programs just express circuits. We can express parameterized 

circuit families using Coq as a meta programming language

• The ghz Coq function returns a SQIR program (of type ucom base n) 
whose semantics is the n-qubit GHZ state
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Proofs of Correctness in Coq
• We might like to prove that evaluating  ghz n on   produces 


- where
|0⟩⊗n |GHZn⟩
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...

|GHZn⟩ = 1
2

( |0⟩⊗n + |1⟩⊗n)
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• Proof Engineering 

• Results
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the focus of our paper



SQIR Design Highlights
• Reference qubits using concrete indices (CNOT (n-1) n  vs.  CNOT x y) 


- Semantics just maps to the proper column/row in the matrix

- Disjointness is syntactic; important for well-formedness

• Separate the unitary core from the full language with measurement 

- Unitary matrix semantics simpler than density matrix formulation (but 

can use the latter when needed)

- Allows representing quantum state using a vector, which enables better 

automation

• See our paper for more!
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Vector States
• apply1 and apply2 become unwieldy for expressions with many qubits

- We provide automation for simplifying products of apply terms to      
grid normal form

- But the normalized terms can be quite large & have many cases to 
account for different orderings of qubit arguments

25

apply1(X, q, d) = I2q ⊗ (0 1
1 0) ⊗ I2(d−q−1)

  for  I2q1 ⊗ (0 0
0 1) ⊗ I2q2−q1−1 ⊗ (0 1

1 0) ⊗ I2d−q2−1 + I2q1 ⊗ (1 0
0 0) ⊗ I2d−q1−1 q1 < q2

apply2(CNOT, q1, q2, d) =
  for  I2q2 ⊗ (0 0

0 1) ⊗ I2q1−q2−1 ⊗ (0 1
1 0) ⊗ I2d−q1−1 + I2q2 ⊗ (1 0

0 0) ⊗ I2d−q2−1 q2 < q1



Vector States
• It’s simpler to describe a unitary gate by its effect on basis vectors

• Basis vectors alone aren’t enough to represent all quantum states                  
 we provide a construct for describing sums over vectors→

• Measurement is not unitary                                                                        
 we provide measurement predicates like probability_of_outcome→

26

X a: ∣ . . . x . . . ⟩ ↦ ∣ . . . (¬x) . . . ⟩
CNOT a b : ∣ . . . x . . . y . . . ⟩ ↦ ∣ . . . x . . . (x ⊕ y) . . . ⟩



Related Work
• QWIRE  [Rand et al., QPL 2017] 

- Implemented in Coq

- Used to verify simple randomness generation circuits and small examples 

• QBRICKS  [Chareton et al., ESOP 2021]

- Implemented in Why3

- Used to verify Grover’s algorithm and Quantum Phase Estimation

• Quantum Hoare Logic (QHL)  [Liu et al., CAV 2019]

- Implemented in Isabelle/HOL

- Used to verify Grover’s algorithm 
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Related Work

SQIR is flexible, supporting multiple semantics and approaches to proof
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QWIRE QBRICKS QHL SQIR

Uses concrete indices

Special support for 
unitary programs

General support for 
measurement



This Talk

• Intro to Quantum


• SQIR Syntax & Semantics


• Proof Engineering


• Results

29



Proofs so Far
• We have formally verified several source programs correct

- Quantum teleportation / superdense coding
- GHZ state preparation
- Deutsch-Jozsa algorithm
- Simon’s algorithm
- Grover’s search algorithm
- Quantum phase estimation

• These proofs constitute about 3.5k lines of Coq (core of SQIR is 3.9k)

• Our specifications and proofs follow the standard textbook arguments
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Example: QPE

• Quantum Phase Estimation: given a circuit implementing some unitary  and 
an state  such that , find  

- The key “quantum” part of Shor’s factoring algorithm

- The most sophisticated quantum algorithm verified by any current tool

U
∣ ψ⟩ U ∣ ψ⟩ = e2πiθ ∣ ψ⟩ θ

• The SQIR implementation is 40 lines and the proof is 1000 lines 

- Proof completed in two person-weeks
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parameterized by U, k, n



Example: QPE
• Correctness property in the case where  can be represented using 

exactly k bits (call this representation z):
θ

• Conclusion says that the running QPE on the input  
produces z in the first k bits

∣ 00...0⟩ ⊗ ∣ ψ⟩
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Example: QPE
• If  can not be exactly expressed using k bits, we get an approximation 

within  of the true value with probability at least 
θ

1
2k+1

4
π2 ≈ 0.41
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Future Directions
• Extract verified SQIR programs to executable OpenQASM circuits


- Requires careful thought about gate sets and the implementation of 
“control” and “adjoint” functions to produce reasonably efficient code

• Verify near-term quantum algorithms 

- Requires better handling for approximate algorithms

- May need to account for errors  requires density matrices→

• Higher-level abstractions for describing quantum programs and 
specifications?
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Conclusions
• Formal verification for quantum programs is a recent area of interest


- Recent work includes QWIRE, QBRICKS, QHL

- SQIR is one of the most successful examples to date

- This is an open field!


• GitHub repository: github.com/inQWIRE/SQIR 


• Full version of the ITP paper: arxiv:2010.01240


• POPL 2021 paper on optimizing SQIR programs: arxiv:1912.02250  
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Pull requests welcome!

https://github.com/inQWIRE/SQIR
https://arxiv.org/pdf/2010.01240.pdf
https://arxiv.org/pdf/1912.02250.pdf

