Proving Quantum Programs Correct

Kesha Hietala University of Maryland kesha@cs.umd.edu

Robert Rand University of Chicago rand@uchicago.edu

Shih-Han Hung University of Maryland shung@umd.edu

ITP 2021

Michael Hicks University of Maryland mwh@cs.umd.edu

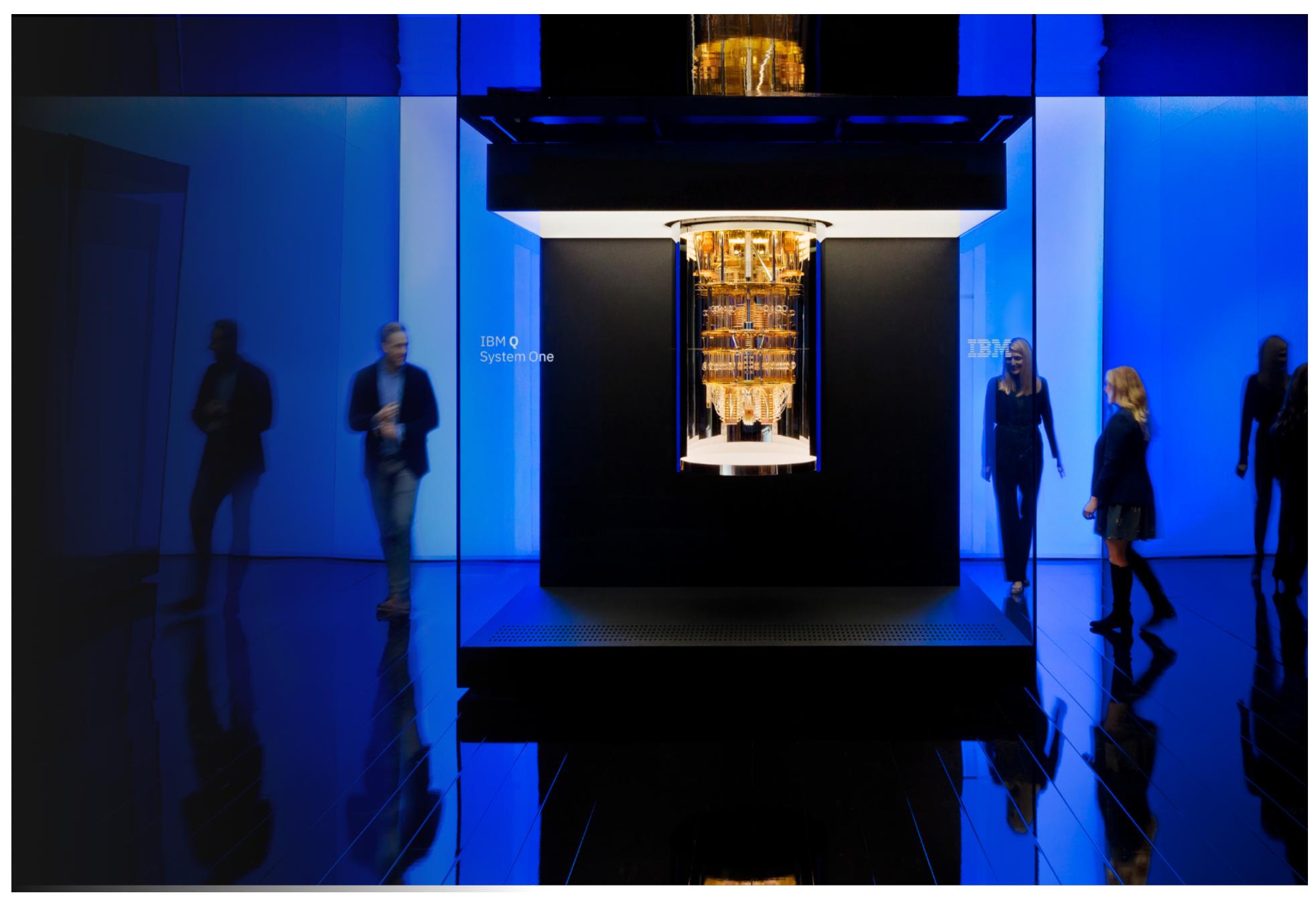
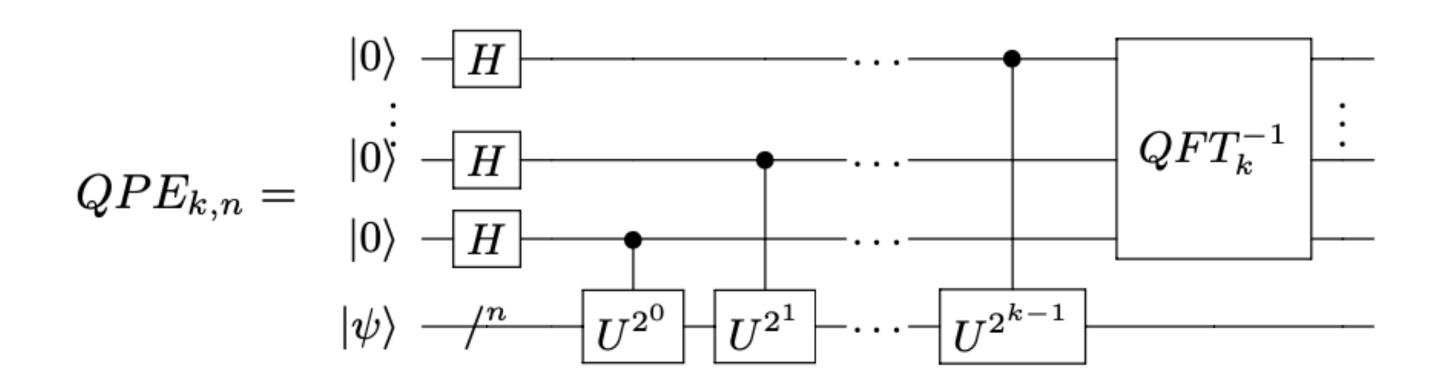


Image from https://www.ibm.com/quantum-computing/

Writing Quantum Programs is Hard

- Quantum indeterminacy \Rightarrow quantum programs are **probabilistic**
- Quantum programs are written as circuits lacksquare



Quantum programs use **new primitives**

- E.g. "prepare a uniform superposition", "perform a Fourier transform"

Writing (Correct) Quantum Programs is Hard

- In general
 - What is "correct?" Answer may be approximate
 - Breakpoints break things (opening the box kills the cat)
 - Simulating quantum programs is intractable
- In the near term
 - Computing resources (e.g., qubits) are scarce
 - Execution is error prone

Formal verification can help!

SQIR

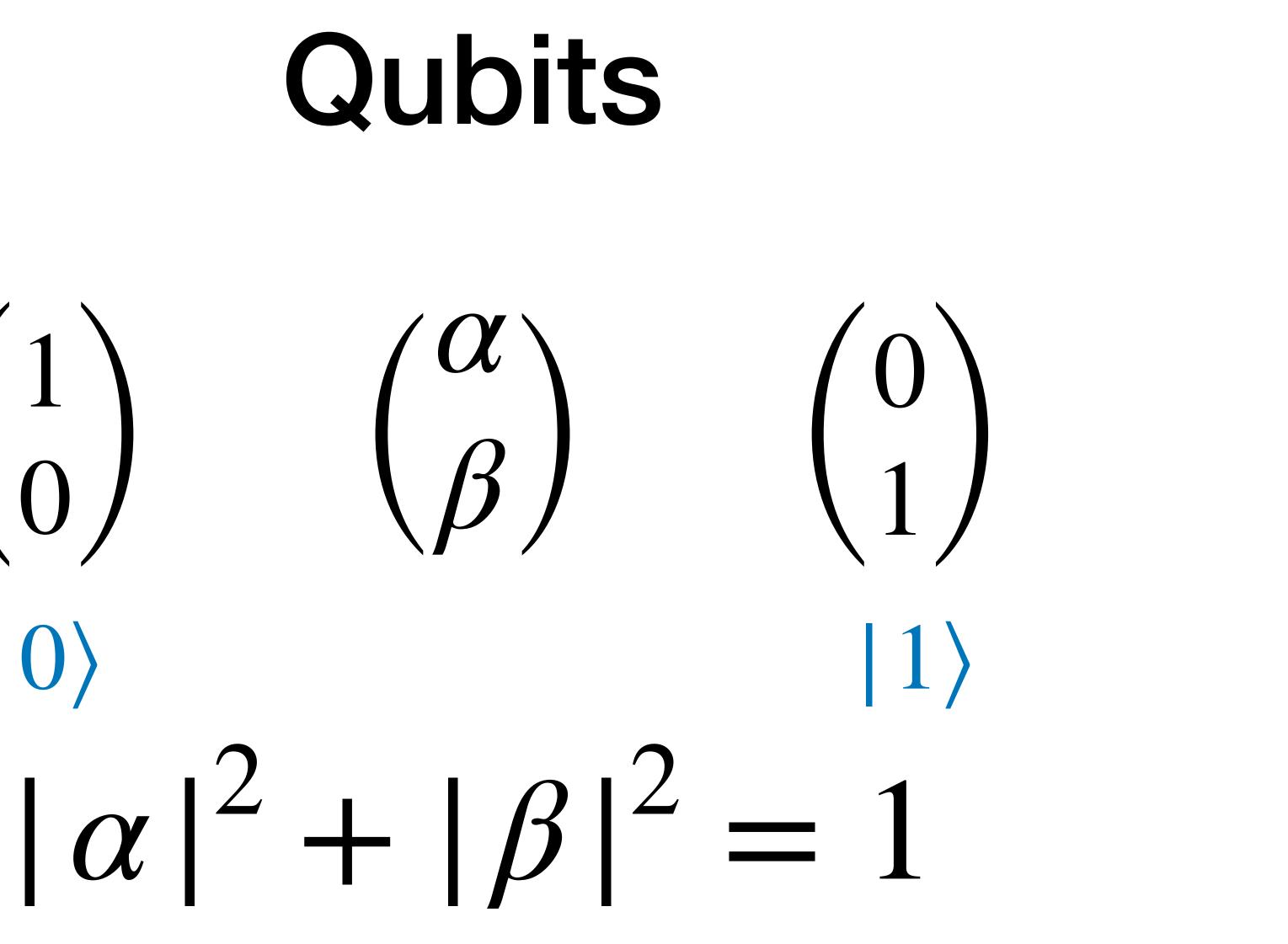
- SQIR is a Simple Quantum Intermediate Representation for expressing quantum circuits + libraries for reasoning about quantum programs in the Cog Proof Assistant
- Presented as the intermediate representation of a verified compiler (à la CompCert) at POPL 2021 (<u>arxiv:1912.02250</u>)
- Our ITP paper looks at using SQIR as a source language for verified quantum programming
- Code available at <u>github.com/inQWIRE/SQIR</u>

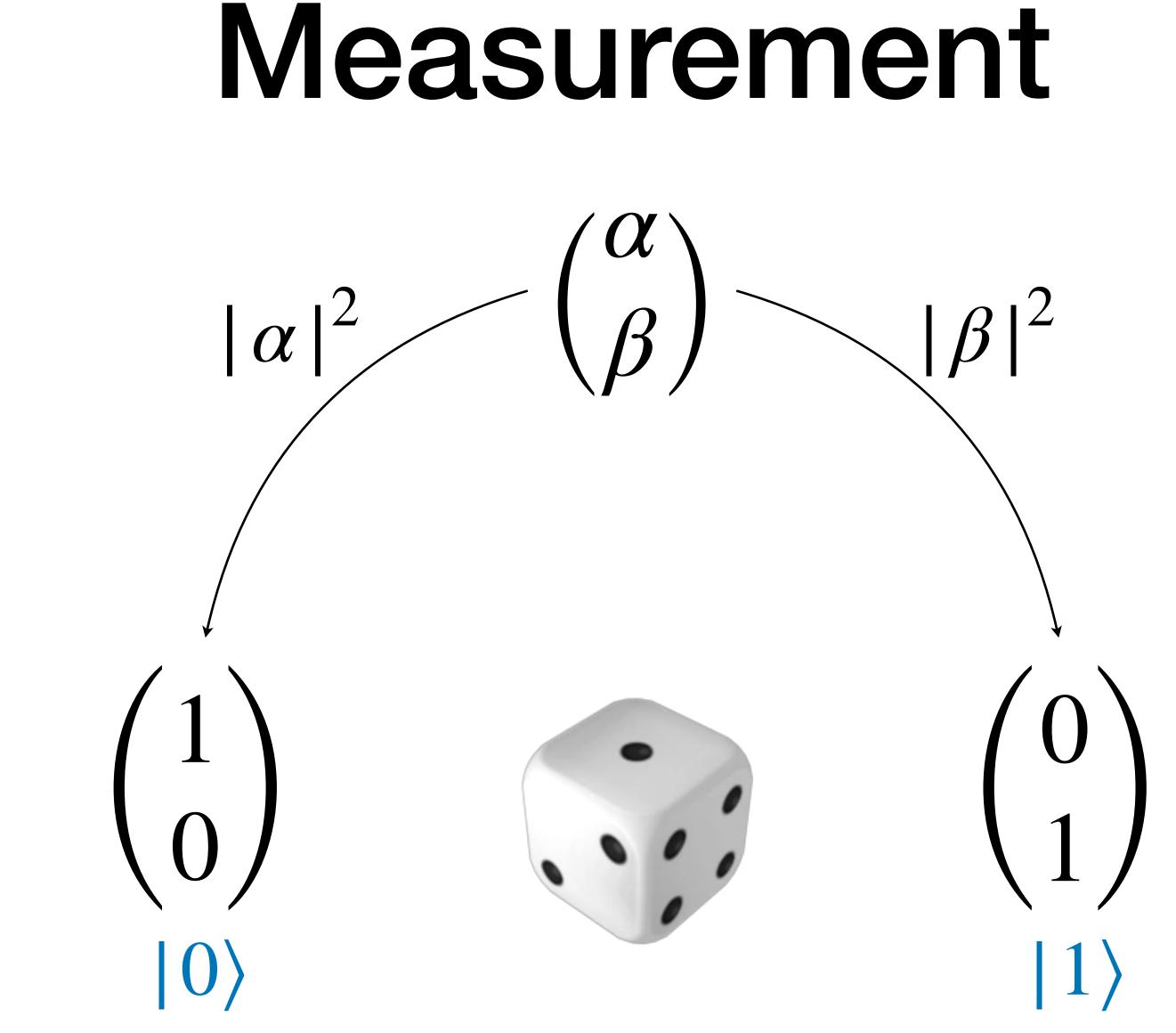
- Intro to Quantum
- SQIR Syntax & Semantics
- Proof Engineering
- Results

This Talk

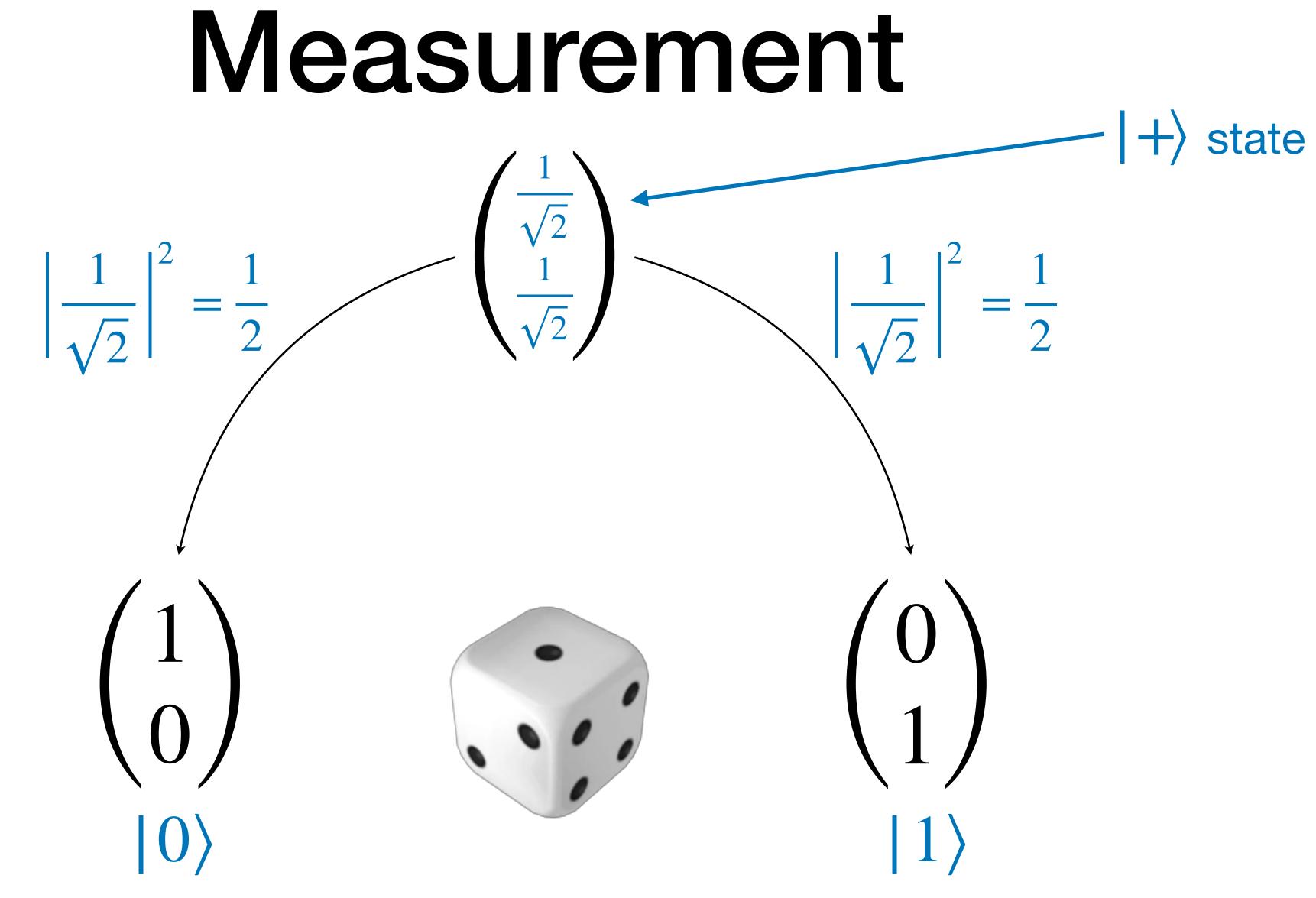
$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $|0\rangle$

Superposition: Qubits can be in multiple states (0 or 1) at once





Measurement: Looking at a qubit probabilistically turns it into a bit.



Measurement: Looking at a qubit probabilistically turns it into a bit.

Operators

A unitary operator transforms, or evolves, a state

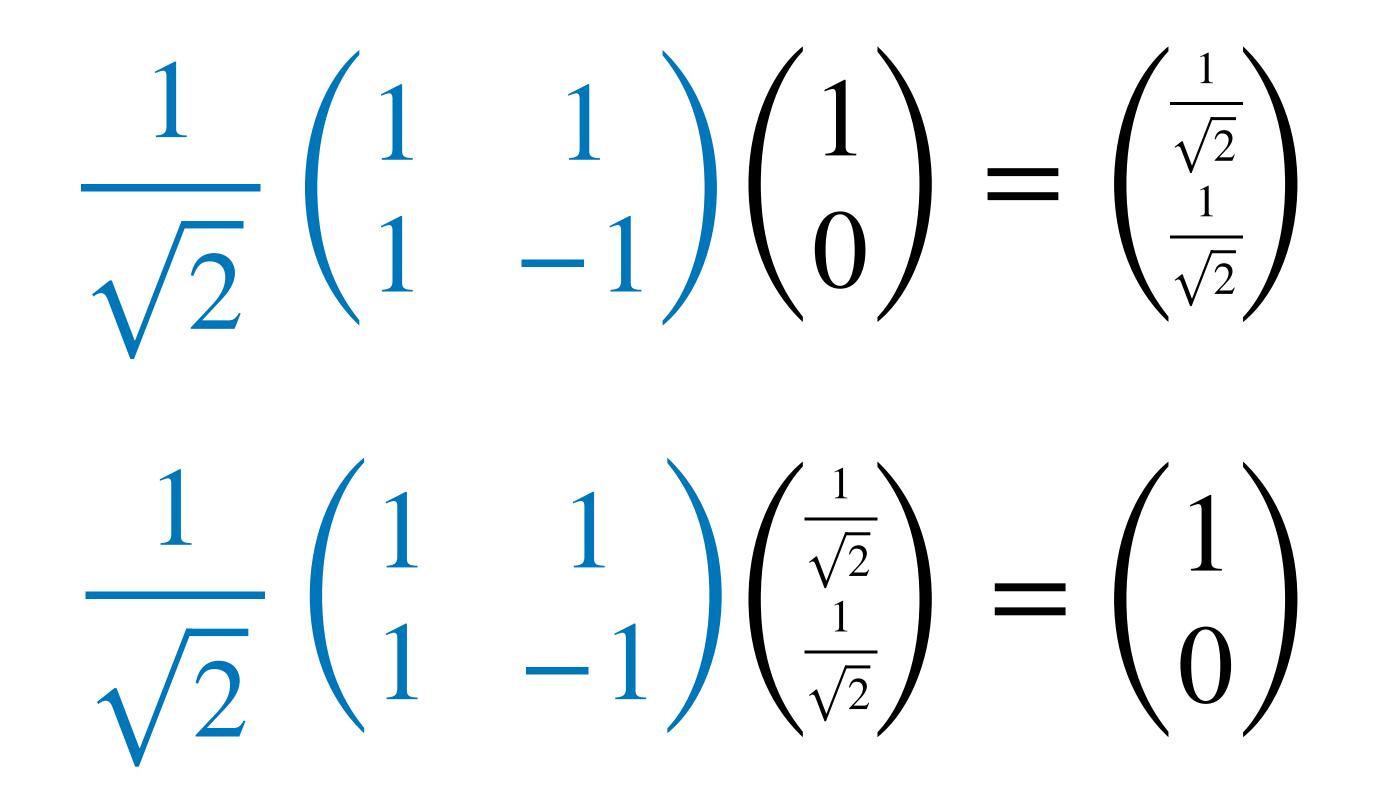
This is the *Hadamard* operator, H (which is its own inverse)

$|0\rangle = |+\rangle$

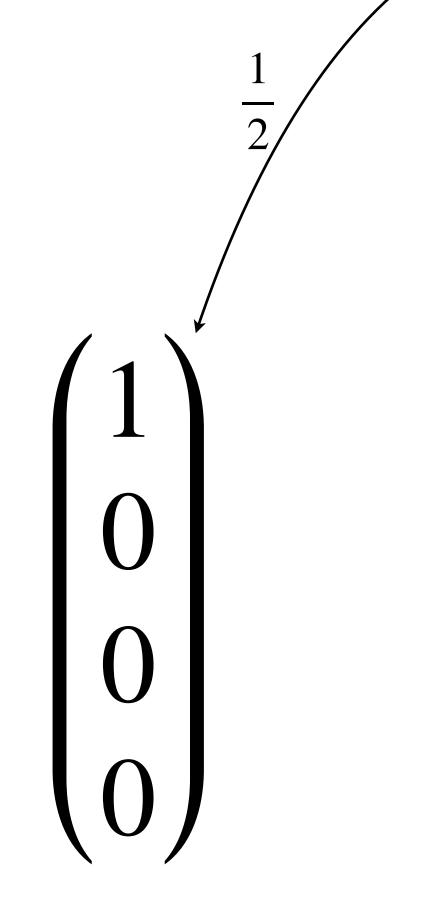
$- |+\rangle = |0\rangle$

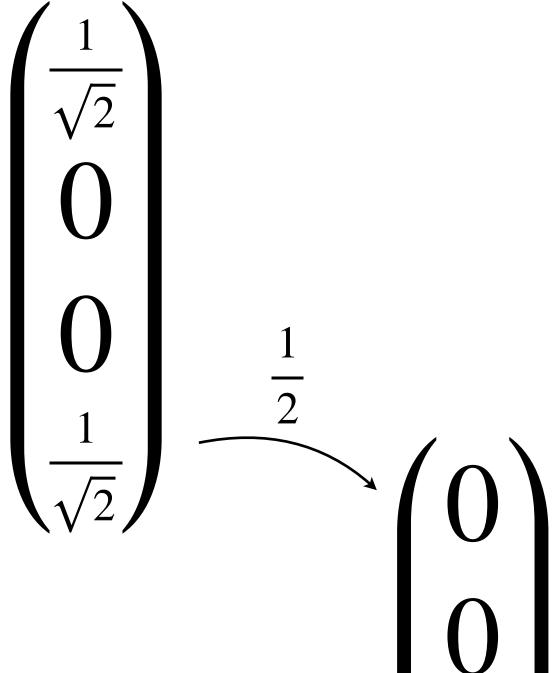
Operators

Operators are represented as unitary matrixes



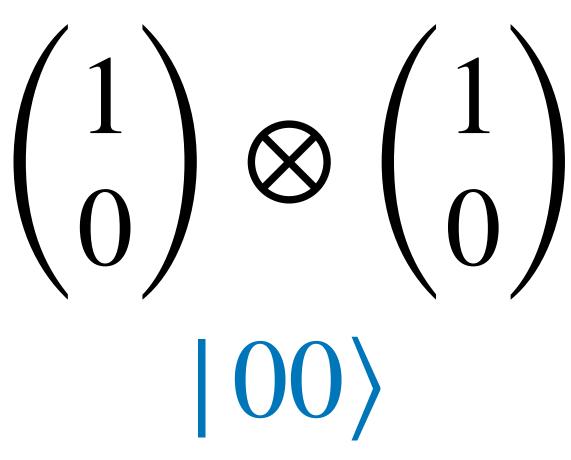
Measurement 2.0





 $\left(\right)$

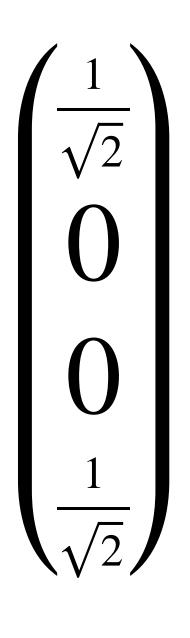
Measurement 2.0 $\sqrt{2}$ $\frac{1}{2}$ 0 $\frac{1}{2}$ $\sqrt{2}$ $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $|00\rangle$ $|11\rangle$



Entanglement

$\overline{\sqrt{2}}$ $\frac{1}{\sqrt{2}}$ $\frac{\sqrt{2}}{1}$ $\frac{\sqrt{2}}{\sqrt{2}}$

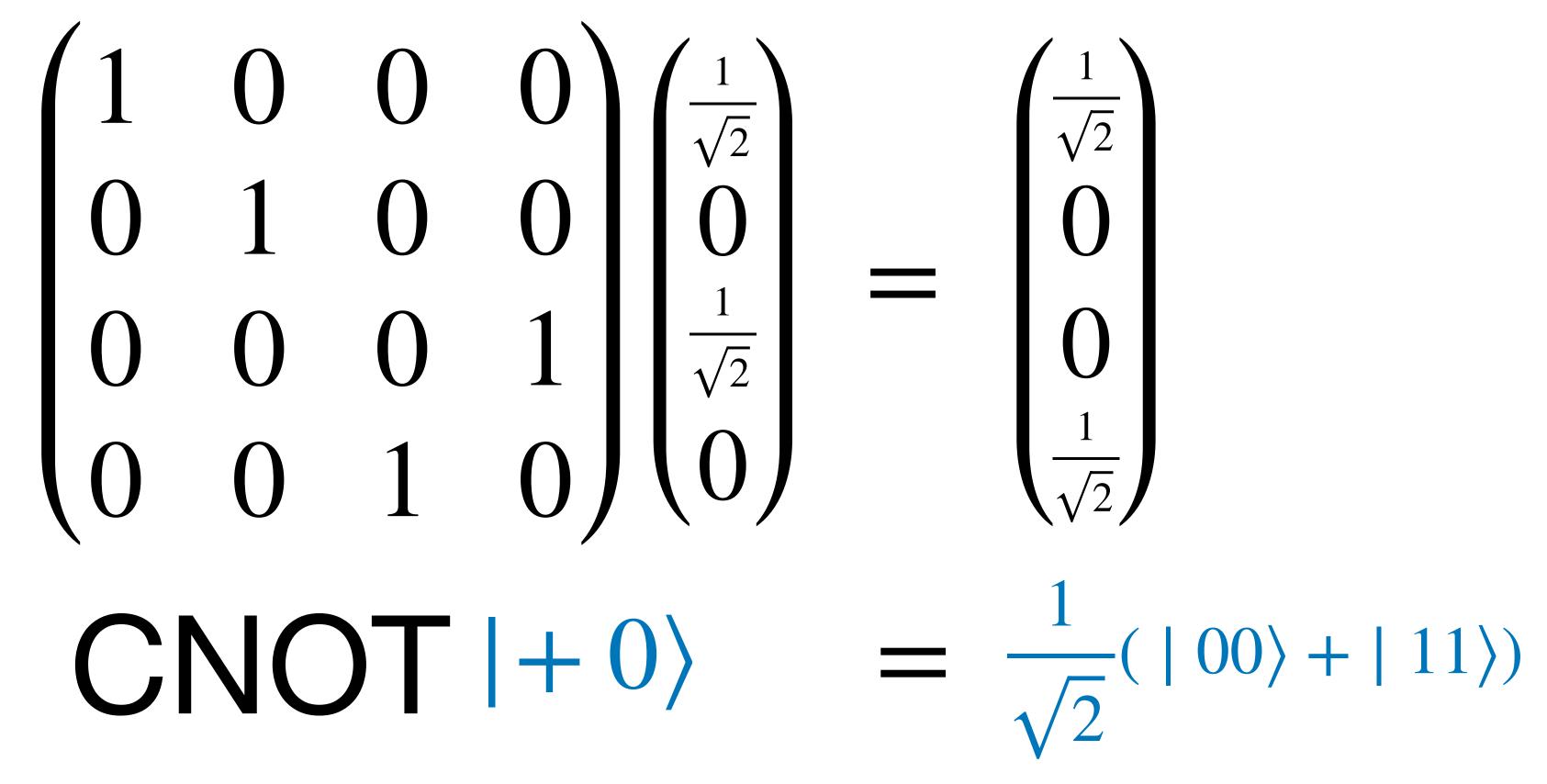
Entangled qubits are not probabilistically independent — they cannot be decomposed. Connection at a distance!



? ⊗ ?

14

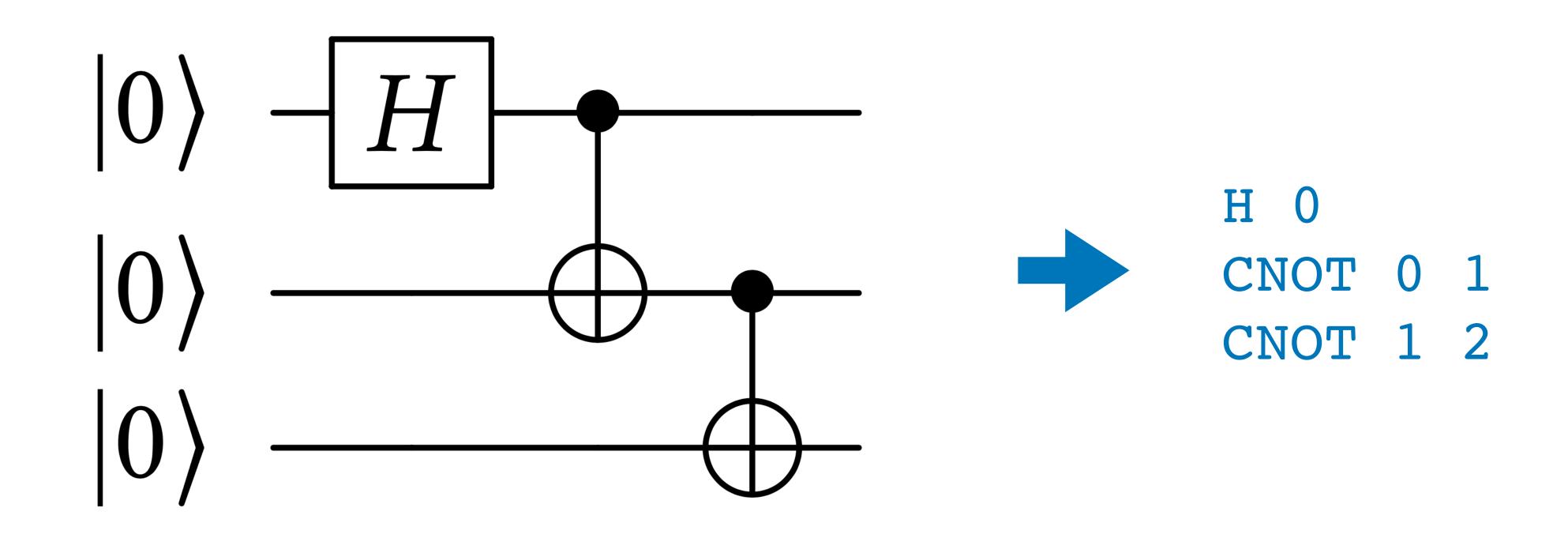
Multi-Qubit Unitaries



General Quantum States

- So far we have seen *pure states*
 - E.g. $|0\rangle, |1\rangle, |+\rangle$
- A mixed state is a (classical) probability distribution over pure states • E.g. $\begin{cases} |0\rangle \text{ with probability 1/2} \\ |1\rangle \text{ with probability 1/2} \end{cases}$
- Density matrices allow us to describe both pure and mixed states $\rho = |0\rangle\langle 0| = \begin{pmatrix} 1 & 0\\ 0 & 0 \end{pmatrix}$

$$p = \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1| = \begin{pmatrix} 1/2 & 0\\ 0 & 1/2 \end{pmatrix}$$



Circuits

Quantum programs are often written as circuits

- Intro to Quantum
- SQIR Syntax & Semantics
- Proof Engineering
- Results

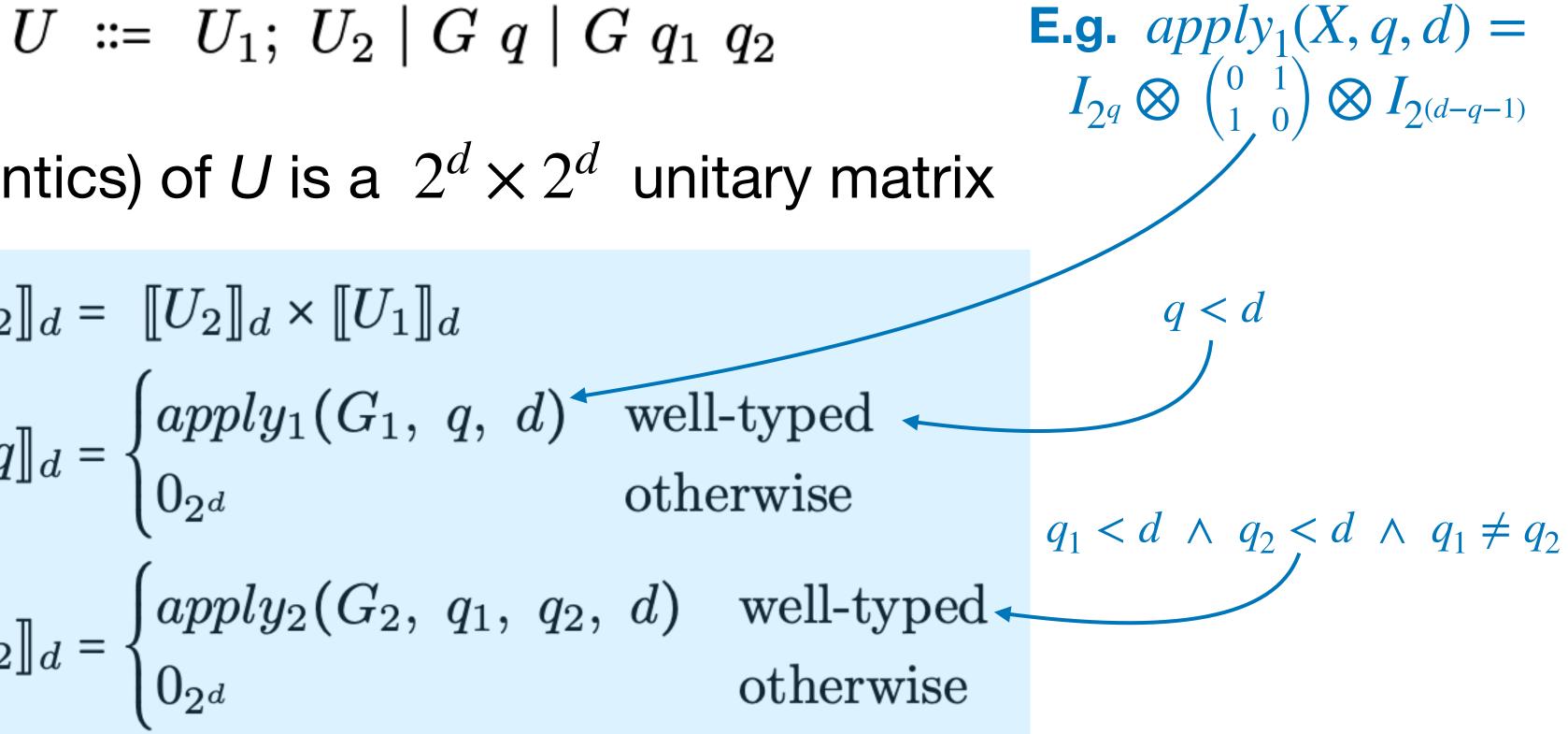
This Talk

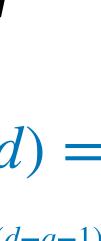
Unitary SQIR

• The denotation (semantics) of U is a $2^d \times 2^d$ unitary matrix

$$\begin{bmatrix} U_{1}; \ U_{2} \end{bmatrix}_{d} = \begin{bmatrix} U_{2} \end{bmatrix}_{d} \times \begin{bmatrix} G_{1} \ q \end{bmatrix}_{d} = \begin{cases} apply_{1} \\ 0_{2^{d}} \end{bmatrix}$$
$$\begin{bmatrix} G_{2} \ q_{1} \ q_{2} \end{bmatrix}_{d} = \begin{cases} apply_{2} \\ 0_{2^{d}} \end{bmatrix}$$

• Semantics parameterized by gate set G and dimension d of a global register





Non-Unitary SQIR

- Semantics parameterized by gate set G and dimension d of a global register
 - $P := \text{skip} | P_1; P_2 | U | \text{meas } q P_1 P_2$
- The denotation of P is a function over $2^d \times 2^d$ density matrices
 - $\{|skip|\}_d(\rho) = \rho$
 - $\{P_1; P_2\}_d(\rho) = (\{P_2\}_d \circ \{P_1\}_d)(\rho)$ $\{ [U] \}_d(\rho) = [[U]]_d \times \rho \times [[U]]_d^{\dagger}$ + $\{P_1\}_d(|1\rangle_q\langle 1| \times \rho \times |1\rangle_q\langle 1|)$
 - $\{ | \text{meas } q P_1 P_2 | \}_d(\rho) = \{ | P_2 | \}_d(|0\rangle_q \langle 0| \times \rho \times |0\rangle_q \langle 0|)$

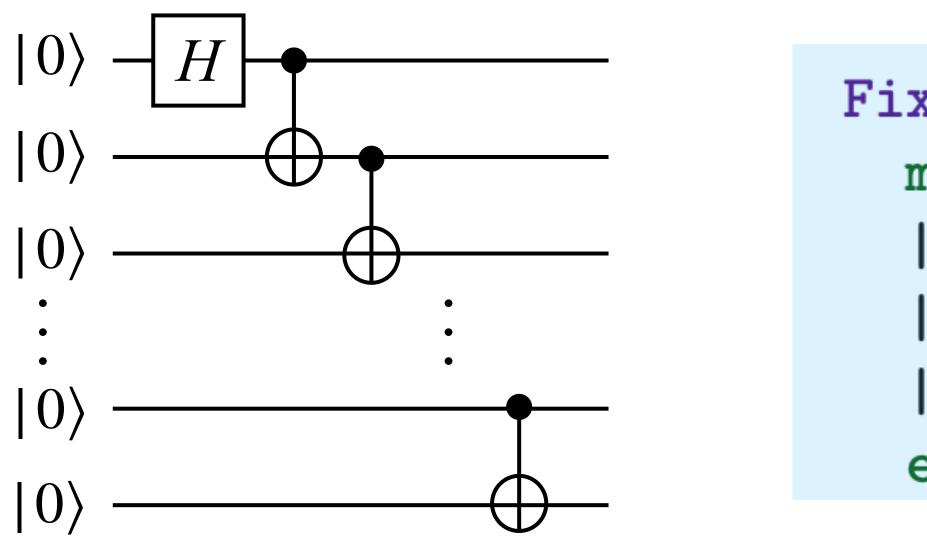
20

Standard semantics; also used in QHL¹ and QWIRE²

¹ Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012. ² Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.

SQIR Metaprogramming

 SQIR programs just express circuits. We can express parameterized circuit families using Coq as a meta programming language



whose semantics is the n-qubit GHZ state

Fixpoint ghz (n : \mathbb{N}) : ucom base n := match n with $| 0 \Rightarrow SKIP$ $| 1 \Rightarrow H 0$ | S n' \Rightarrow ghz n'; CNOT (n'-1) n' end.

• The ghz Coq function returns a SQIR program (of type ucom base n)

Proofs of Correctness in Coq

- where $|GHZ^n\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} + |1\rangle^{\otimes n})$
 - match n with $| 0 \Rightarrow I 1$ | S n' $\Rightarrow \frac{1}{\sqrt{2}} * |0\rangle^{\diamond}$ end.
 - Lemma ghz_correct : \forall n : \mathbb{N} , $n > 0 \rightarrow [[ghz n]]_n \times |0\rangle^{\otimes n} = GHZ n.$ Proof.
 - • •
 - Qed.

• We might like to prove that evaluating ghz n on $|0\rangle^{\otimes n}$ produces $|GHZ^n\rangle$

Definition GHZ (n : \mathbb{N}) : Vector (2 ^ n) :=

$$^{\otimes n}$$
 + $\frac{1}{\sqrt{2}}$ * $|1\rangle^{\otimes n}$

- Intro to Quantum
- SQIR Syntax & Semantics
- Results

This Talk

SQIR Design Highlights

- Reference qubits using concrete indices (CNOT (n-1) n vs. CNOT x y)
 - Semantics just maps to the proper column/row in the matrix
 - Disjointness is syntactic; important for well-formedness

- Unitary matrix semantics simpler than *density matrix* formulation (but can use the latter when needed)
- Allows representing quantum state using a vector, which enables better automation
- See our paper for more!

Separate the unitary core from the full language with measurement

Vector States

• apply₁ and apply₂ become unwieldy for expressions with many qubits

 $apply_1(X, q, d) =$

 $apply_{2}(CNOT, q_{1}, q_{2}, d) = \begin{cases} I_{2q_{1}} \otimes \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \otimes I_{2q_{2}-q_{1}-1} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes I_{2^{d}-q_{2}-1} \otimes I_{2^{d}-q_{2}-1} \otimes I_{2q_{1}-q_{2}-1} \otimes I_{$

- We provide automation for simplifying products of apply terms to grid normal form
- But the normalized terms can be quite large & have many cases to account for different orderings of qubit arguments

$$= I_{2^q} \bigotimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \bigotimes I_{2^{(d-q-1)}}$$

$$I_{q_{1}-1} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes I_{2^{d-q_{2}-1}} + I_{2^{q_{1}}} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes I_{2^{d-q_{1}-1}} \text{ for } q_{1}$$

$$I_{q_{2}-1} \otimes \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes I_{2^{d-q_{1}-1}} + I_{2^{q_{2}}} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \otimes I_{2^{d-q_{2}-1}} \text{ for } q_{2}$$

Vector States

- It's simpler to describe a unitary gate by its effect on basis vectors
 - X a: $| \dots x \dots \rangle \mapsto | \dots (\neg x) \dots \rangle$ CNOT a b: $| \dots x \dots y \dots \rangle \mapsto | \dots x \dots (x \oplus y) \dots \rangle$
- Basis vectors alone aren't enough to represent all quantum states
 we provide a construct for describing sums over vectors
- Measurement is not unitary
 we provide *measurement predicates* like probability_of_outcome

Related Work

- QWIRE [Rand et al., QPL 2017]
 - Implemented in Coq
- Used to verify simple randomness generation circuits and small examples • QBRICKS [Chareton et al., ESOP 2021]
 - Implemented in Why3
 - Used to verify Grover's algorithm and Quantum Phase Estimation
- Quantum Hoare Logic (QHL) [Liu et al., CAV 2019]
 - Implemented in Isabelle/HOL
 - Used to verify Grover's algorithm

Related Work

	QWIRE	QBRICKS	QHL	SQIR
Uses concrete indices				
Special support for unitary programs				
General support for measurement				

SQIR is *flexible*, supporting multiple semantics and approaches to proof

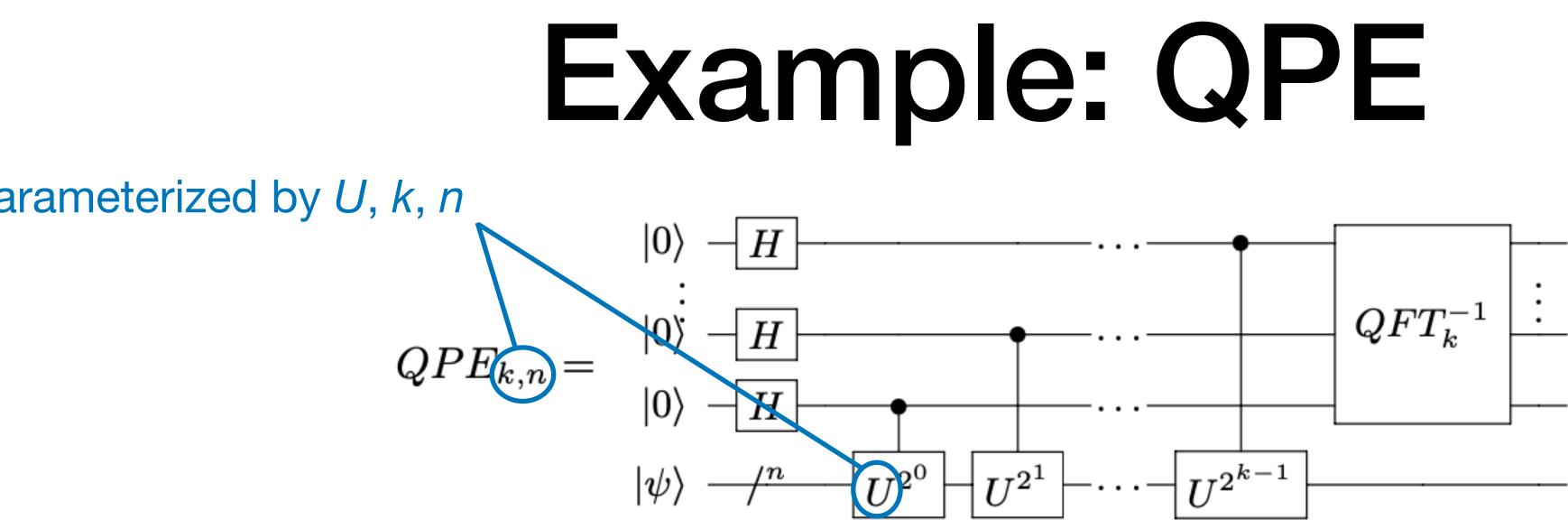
- Intro to Quantum
- SQIR Syntax & Semantics
- Proof Engineering
- **Results**

This Talk

Proofs so Far

- We have formally verified several source programs correct
 - Quantum teleportation / superdense coding
 - GHZ state preparation
 - Deutsch-Jozsa algorithm
 - Simon's algorithm
 - Grover's search algorithm
 - Quantum phase estimation
- These proofs constitute about 3.5k lines of Coq (core of SQIR is 3.9k)
- Our specifications and proofs follow the standard textbook arguments

parameterized by U, k, n



- Quantum Phase Estimation: given a circuit implementing some unitary U and lacksquarean state $|\psi\rangle$ such that $U|\psi\rangle = e^{2\pi i\theta} |\psi\rangle$, find θ
 - The key "quantum" part of Shor's factoring algorithm
 - The most sophisticated quantum algorithm verified by any current tool
- The SQIR implementation is 40 lines and the proof is 1000 lines - Proof completed in two person-weeks

Example: QPE

• Correctness property in the case where θ can be represented using exactly k bits (call this representation z):

Lemma QPE_correct_simplified: \forall k n (u : ucom base n) z (ψ : Vector 2^n), $\texttt{n} > \texttt{0} \rightarrow \texttt{k} > \texttt{1} \rightarrow \texttt{uc_well_typed} ~\texttt{u} \rightarrow \texttt{WF_Matrix} ~\psi \rightarrow$ let θ := z / 2^k in $\llbracket \mathbf{u} \rrbracket_n \ \times \ \psi \ = \ e^{2\pi i \theta} \ \ast \ \psi \ \rightarrow$ $\llbracket \mathsf{QPE} \ \mathtt{k} \ \mathtt{n} \ \mathtt{u} \rrbracket_{k+n} \ \times \ (|\mathsf{0}\rangle^k \ \otimes \ \psi) \ = \ |\mathtt{z}\rangle \ \otimes \ \psi.$

• Conclusion says that the running QPE on the input $|00...0\rangle \otimes |\psi\rangle$ produces z in the first k bits

Example: QPE

• If θ can not be exactly expressed using k bits, we get an approximation within $\frac{1}{2^{k+1}}$ of the true value with probability at least $\frac{4}{\pi^2} \approx 0.41$

<code>n > 0 ightarrow k > 1 ightarrow uc_well_typed u ightarrow Pure_State_Vector ψ ightarrow</code> $-1 / 2^{k+1} \leq \delta < 1 / 2^{k+1} \rightarrow \delta \neq 0 \rightarrow$ let θ := z / 2^k + δ in $\llbracket \mathbf{u} \rrbracket_n \times \psi = e^{2\pi i\theta} \ast \psi \rightarrow$ prob_partial_meas $|z\rangle$ ([QPE k n u]] $_{k+1}$

Lemma QPE_semantics_full : \forall k n (u : ucom base n) z (ψ : Vector 2^n) (δ : R),

$$_{dash n}$$
 $imes$ (ert 0) k \otimes ψ)) \geq 4 / π^2 .

Future Directions

- Extract verified SQIR programs to executable OpenQASM circuits
 - Requires careful thought about gate sets and the implementation of "control" and "adjoint" functions to produce reasonably efficient code
- Verify near-term quantum algorithms
 - Requires better handling for *approximate* algorithms
 - May need to account for errors \rightarrow requires density matrices
- Higher-level abstractions for describing quantum programs and specifications?

Conclusions

- Formal verification for quantum programs is a recent area of interest - Recent work includes QWIRE, QBRICKS, QHL

 - SQIR is one of the most successful examples to date
 - This is an open field!
- GitHub repository: <u>github.com/inQWIRE/SQIR</u>
- Full version of the ITP paper: <u>arxiv:2010.01240</u>
- POPL 2021 paper on optimizing SQIR programs: <u>arxiv:1912.02250</u>

Pull requests welcome!