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Writing Quantum Programs is Hard

 Quantum indeterminacy = quantum programs are probabilistic

 Quantum programs are written as circuits
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e Quantum programs use new primitives

- E.g. “prepare a uniform superposition”, “perform a Fourier transform”

3



Writing (Correct) Quantum Programs is Hard

* In general
- What is “correct?” Answer may be approximate
- Breakpoints break things (opening the box Kills the cat)
- Simulating quantum programs is intractable

* |n the near term
- Computing resources (e.g., qubits) are scarce
- EXxecution Is error prone

Formal verification can help!



SQIR

SQIR is a Simple Quantum Intermediate Representation for expressing )
quantum circuits + libraries for reasoning about quantum programs in the | | )
Coq Proof Assistant (

—

Presented as the intermediate representation of a verified compiler (a la
CompCert) at POPL 2021 (arxiv:1912.02250)

Our ITP paper looks at using SQIR as a source language for verified
quantum programming

Code available at github.com/inQWIRE/SQIR



https://arxiv.org/pdf/1912.02250.pdf
https://github.com/inQWIRE/SQIR
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Qubits
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Superposition: Qubits can be in multiple states (0O or 1) at once




Measurement
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Measurement:. Looking at a qubit probabilistically turns it into a bit.
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Measurement:. Looking at a qubit probabilistically turns it into a bit.



Operators

A unitary operator transforms, or evolves, a state
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This Is the Hadamard operator, H
(which is its own inverse)
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Operators

Operators are represented as unitary matrixes
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Measurement 2.0
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Measurement 2.0
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Entanglement
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Entangled qubits are not probabilistically independent —
they cannot be decomposed. Connection at a distance!
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Multi-Qubit Unitaries

(100) + ] 11))

e
V2



General Quantum States

e So far we have seen pure states

~ E.g. 10),]1), |+

* A mixed state is a (classical) probability distribution over pure states

» E.g. | |0) with probability 1/2
| 1) with probability 1/2

* Density matrices allow us to describe both pure and mixed states

p=\0><ow=((1) 8) p %\0><0\+%\1><1\=(1{f 1‘/’2)
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Circuits

Quantum programs are often written as circuits

H O
CNOT 0 1
CNOT 1 2

=)
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Unitary SQIR

 Semantics parameterized by gate set G and dimension d of a global register

U == U;; Uy | Gq|Gaqrqo E.g9. apply,(X,q,d) =
by & <(1) (1)> & Iri-g-1)
e The denotation (semantics) of Uis a 2¢ x 2¢ unitary matrix

\U1; Uslla= [Uzlax [U1i]aq q<d

Gy qlla = {applyl(Gl, g, d)” well-typed « /
094 otherwise G<d A <d A ta
apply2(G2, q1, g2, d) well-typed«
Q _
G2 1 g2la {02d otherwise
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Non-Unitary SQIR

 Semantics parameterized by gate set G and dimension d of a global register

P =

skip | P1; P> |U |meas q P; P;

» The denotation of P is a function over 2¢ x 2¢ density matrices

{{meas q P; P,

ta(p) = p
}d(,D) i ({IPZI}d ’ ﬂpll}d)(p) Standard semantics;
}d(P) = [[U]la x p x [[U]]Z also used in QHL

and QWIRE-Z

Fa(p) = {P2[ra(]0)4{0] x p x [0)4(0])
+ {P1fta(|1)g(1] x p x [1)4(1])

1Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.
20 2 Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.



SQIR Metaprogramming

 SQIR programs just express circuits. We can express parameterized
circuit families using Coqg as a meta programming language

0 | H ] Fixpoint ghz (n : N) : ucom base n :=
[0) NVan match n with

|10) D | 0 = SKIP

Z : ] 1 = HO

O) o | Sn' = ghz n'; CNOT (n'-1) n'

0) D end.

 The ghz Coq function returns a SQIR program (of type ucom base n)
whose semantics is the n-qubit GHZ state
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Proofs of Correctness in Coq

* We might like to prove that evaluating ghz n on |0)®" produces |GHZ")
- where |GHZ") = —(|0)®" + | 1)®"
NG

Definition GHZ (n : N) : Vector (2 ~ n) :=
match n with

| O = I 1
| Sn' = :%§=k|0)®” +-j5§ * [1)®"
end.

Lemma ghz_correct : V n : N,

n >0 — [ghz n], x [0)®°" = GHZ n.
Proof.

Qed.
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SQIR Design Highlights

 Reference qubits using concrete indices (CNOT (n-1) n VS. CNOT x vy)
- Semantics just maps to the proper column/row in the matrix
- Disjointness is syntactic; important for well-formedness

e Separate the unitary core from the full language with measurement

- Unitary matrix semantics simpler than density matrix formulation (but
can use the latter when needed)

- Allows representing quantum state using a vector, which enables better
automation

e See our paper for more!
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Vector States

o applyr and apply> become unwieldy for expressions with many qubits
apply, (X, q,d) = I,; ® ((1) (1)) Q Lria—g-1)

12611 X <8 (1)> ® 12612—611—1 X <(1) (1)> ® Izd—qz—l T 12611 X <(1) 8) ® Izd—qu for 91 < 4,

applyZ(CNOTa q19 qza d) —
12‘12 ® <8 (1)> ® Iqu—qz—l ® <(1) (1)> ® Izd—ql—l + 12q2 ® <é 8) ® Izd—qz—l fOI’ qZ < ql

- We provide automation for simplifying products of apply terms to
grid normal form

- But the normalized terms can be quite large & have many cases to
account for different orderings of qubit arguments
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Vector States

It’s simpler to describe a unitary gate by its effect on basis vectors

X a: |[...x...)~|...(7x)...)

CNOT a b: |..x...y...) P |..x...x®y)...)

Basis vectors alone aren’t enough to represent all guantum states
— We provide a construct for describing sums over vectors

Measurement is not unitary
— we provide measurement predicates like probability of outcome
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Related Work

« QWIRE [Rand et al., QPL 2017]
- Implemented in Cog
- Used to verity simple randomness generation circuits and small examples

 QBRICKS [Chareton et al., ESOP 2021]
- Implemented in Why3
- Used to verify Grover’s algorithm and Quantum Phase Estimation

* Quantum Hoare Logic (QHL) [Liu et al., CAV 2019]
- Implemented in Isabelle/HOL
- Used to verify Grover’s algorithm
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Related Work

QWIRE QBRICKS QHL  SQIR

Uses concrete indices

Special support for
unitary programs

......................................................................................................................................................................................................................................................................................................

General support for
measurement

SQIR is flexible, supporting multiple semantics and approaches to proof
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Proofs so Far

 \We have formally verified several source programs correct
- Quantum teleportation / superdense coding
- GHZ state preparation
- Deutsch-Jozsa algorithm
- Simon’s algorithm
- Grover’s search algorithm
- Quantum phase estimation

 These proofs constitute about 3.5k lines of Coqg (core of SQIR is 3.9k)

* QOur specifications and proofs follow the standard textbook arguments
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Example: QPE

’ e

parameterized by U, k, n

* QFT;I;

] 2k:—1

 Quantum Phase Estimation: given a circuit implementing some unitary U and
an state | w) such that U | w) = e*™ | y), find @

- The key “quantum” part of Shor’s factoring algorithm
- The most sophisticated quantum algorithm verified by any current tool

 The SQIR implementation is 40 lines and the proof is 1000 lines
- Proof completed in two person-weeks
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Example: QPE

e Correctness property in the case where 6 can be represented using
exactly k bits (call this representation 2):

Lemma QPE_correct_simplified: V k n (u : ucom base n) z (¢ : Vector 2"),
n >0 —k >1 — uc_well _typed u - WF_Matrix ¥ —
let § := z / 2F in

[u], X ¥ = e*™ % ¢p —

[QPE k n ufkin x (|0)° ® ¥) = |z) ® 9.

« Conclusion says that the running QPE on the input | 00...0) ® | y)
produces z in the first k bits
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Example: QPE

 |f @ can not be exactly expressed using k bits, we get an approximation

. . . 4
within of the true value with probabillity at least — ~ 0.41
Vk+1 72

Lemma QPE_semantics_full : V k n (u : ucom base n) z (¢ : Vector 2") (0 : R),

n >0 —>k >1 — uc_well_typed u — Pure_State_Vector ¥ —
-1 /2 < § <1 /2 55 £0 >

let § :=2z / 2" + § in

[u]. x ¥ = e*™ % ¢ —

prob_partial_meas |z) ([QPE k n ulzyn X (|0)* ® ¥)) > 4 / =2.
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Future Directions

e Extract verified SQIR programs to executable OpenQASM circuits

- Requires careful thought about gate sets and the implementation of
“control” and "adjoint” functions to produce reasonably efficient code

» \erify near-term quantum algorithms
- Requires better handling for approximate algorithms

- May need to account for errors — requires density matrices

* Higher-level abstractions for describing quantum programs and
specifications?
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Conclusions

Formal verification for guantum programs is a recent area of interest
- Recent work includes QWIRE, QBRICKS, QHL

- SQIR is one of the most successful examples to date

- This Iis an open field!

GitHub repository: github.com/inQWIRE/SQIR Pull requests welcome!

Full version of the ITP paper: arxiv:2010.01240

POPL 2021 paper on optimizing SQIR programs: arxiv:1912.02250
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