Proving Quantum Programs Correct

Kesha Hietala Robert Rand Shih-Han Hung Liyi LI Michael Hicks
University of Maryland University of Chicago University of Maryland University of Maryland University of Maryland
kesha@cs.umd.edu rand@uchicago.edu shung@umd.edu livili2@umd.edu mwh@cs.umd.edu

ITP 2021

mailto:kesha@cs.umd.edu
mailto:rand@uchicago.edu
mailto:shung@umd.edu
mailto:liyili2@umd.edu
mailto:mwh@cs.umd.edu

IBMQ
System One

Image from https://www.ibm.com/quantum-computing/

https://www.ibm.com/quantum-computing/

Writing Quantum Programs is Hard

 Quantum indeterminacy = quantum programs are probabilistic

 Quantum programs are written as circuits

0

QFT ' |-

, -

U20 U21 “ e U2k_1

-

~IEHE:
9

QPEL , =

0
4

N

>_
-
>_
)

\\

e Quantum programs use new primitives

- E.g. “prepare a uniform superposition”, “perform a Fourier transform”

3

Writing (Correct) Quantum Programs is Hard

* In general
- What is “correct?” Answer may be approximate
- Breakpoints break things (opening the box Kills the cat)
- Simulating quantum programs is intractable

* |n the near term
- Computing resources (e.g., qubits) are scarce
- EXxecution Is error prone

Formal verification can help!

SQIR

SQIR is a Simple Quantum Intermediate Representation for expressing)
quantum circuits + libraries for reasoning about quantum programs in the | |)
Coq Proof Assistant (

—

Presented as the intermediate representation of a verified compiler (a la
CompCert) at POPL 2021 (arxiv:1912.02250)

Our ITP paper looks at using SQIR as a source language for verified
quantum programming

Code available at github.com/inQWIRE/SQIR

https://arxiv.org/pdf/1912.02250.pdf
https://github.com/inQWIRE/SQIR

This Talk

Intro to Quantum
SQIR Syntax & Semantics
Proof Engineering

Results

Qubits

) () ()
0) 1)
lal”+ |7 =1

Superposition: Qubits can be in multiple states (0O or 1) at once

Measurement

W 0

0)

Measurement:. Looking at a qubit probabilistically turns it into a bit.

Measurement .
+) state
()

1

\/5 2

0) | 1)

Measurement:. Looking at a qubit probabilistically turns it into a bit.

Operators

A unitary operator transforms, or evolves, a state

H 10) =1+

H [+ =10)

This Is the Hadamard operator, H
(which is its own inverse)

10

Operators

Operators are represented as unitary matrixes

0)6)-0
0 0-0

Measurement 2.0

1
NG

1

o
Ol ¢
L 2
A

o OO =
—_ O O O

Measurement 2.0

1

NG
! 0
0

2
7 RN

)26 (1))

| 00) [11)

Entanglement

1 1

7 7

0 0

1

= 0
1

0 7

v 1 TR 9
(De(y) e

Entangled qubits are not probabilistically independent —
they cannot be decomposed. Connection at a distance!

14

Multi-Qubit Unitaries

(100) +] 11))

e
V2

General Quantum States

e So far we have seen pure states

~ E.g. 10),]1), |+

* A mixed state is a (classical) probability distribution over pure states

» E.g. | |0) with probability 1/2
| 1) with probability 1/2

* Density matrices allow us to describe both pure and mixed states

p=\0><ow=((1) 8) p %\0><0\+%\1><1\=(1{f 1‘/’2)

16

Circuits

Quantum programs are often written as circuits

H O
CNOT 0 1
CNOT 1 2

=)

17

This Talk

Intro to Quantum
SQIR Syntax & Semantics
Proof Engineering

Results

18

Unitary SQIR

 Semantics parameterized by gate set G and dimension d of a global register

U == U;; Uy | Gq|Gaqrqo E.g9. apply,(X,q,d) =
by & <(1) (1)> & Iri-g-1)
e The denotation (semantics) of Uis a 2¢ x 2¢ unitary matrix

\U1; Uslla= [Uzlax [U1i]aq q<d

Gy qlla = {applyl(Gl, g, d)” well-typed « /
094 otherwise G<d A <d A ta
apply2(G2, q1, g2, d) well-typed«
Q _
G2 1 g2la {02d otherwise

19

Non-Unitary SQIR

 Semantics parameterized by gate set G and dimension d of a global register

P =

skip | P1; P> |U |meas q P; P;

» The denotation of P is a function over 2¢ x 2¢ density matrices

{{meas q P; P,

ta(p) = p
}d(,D) i ({IPZI}d ’ ﬂpll}d)(p) Standard semantics;
}d(P) = [[U]la x p x [[U]]Z also used in QHL

and QWIRE-Z

Fa(p) = {P2[ra(]0)4{0] x p x [0)4(0])
+ {P1fta(|1)g(1] x p x [1)4(1])

1Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.
20 2 Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.

SQIR Metaprogramming

 SQIR programs just express circuits. We can express parameterized
circuit families using Coqg as a meta programming language

0 | H] Fixpoint ghz (n : N) : ucom base n :=
[0) NVan match n with

|10) D | 0 = SKIP

Z :] 1 = HO

O) o | Sn' = ghz n'; CNOT (n'-1) n'

0) D end.

 The ghz Coq function returns a SQIR program (of type ucom base n)
whose semantics is the n-qubit GHZ state

21

Proofs of Correctness in Coq

* We might like to prove that evaluating ghz n on |0)®" produces |GHZ")
- where |GHZ") = —(|0)®" + | 1)®"
NG

Definition GHZ (n : N) : Vector (2 ~ n) :=
match n with

| O = I 1
| Sn' = :%§=k|0)®” +-j5§ * [1)®"
end.

Lemma ghz_correct : V n : N,

n >0 — [ghz n], x [0)®°" = GHZ n.
Proof.

Qed.

22

This Talk

Intro to Quantum
SQIR Syntax & Semantics
Proof Engineering «——— the focus of our paper

Results

23

SQIR Design Highlights

 Reference qubits using concrete indices (CNOT (n-1) n VS. CNOT x vy)
- Semantics just maps to the proper column/row in the matrix
- Disjointness is syntactic; important for well-formedness

e Separate the unitary core from the full language with measurement

- Unitary matrix semantics simpler than density matrix formulation (but
can use the latter when needed)

- Allows representing quantum state using a vector, which enables better
automation

e See our paper for more!

24

Vector States

o applyr and apply> become unwieldy for expressions with many qubits
apply, (X, q,d) = I,; ® ((1) (1)) Q Lria—g-1)

12611 X <8 (1)> ® 12612—611—1 X <(1) (1)> ® Izd—qz—l T 12611 X <(1) 8) ® Izd—qu for 91 < 4,

applyZ(CNOTa q19 qza d) —
12‘12 ® <8 (1)> ® Iqu—qz—l ® <(1) (1)> ® Izd—ql—l + 12q2 ® <é 8) ® Izd—qz—l fOI’ qZ < ql

- We provide automation for simplifying products of apply terms to
grid normal form

- But the normalized terms can be quite large & have many cases to
account for different orderings of qubit arguments

25

Vector States

It’s simpler to describe a unitary gate by its effect on basis vectors

X a: |[...x...)~|...(7x)...)

CNOT a b: |..x...y...) P |..x...x®y)...)

Basis vectors alone aren’t enough to represent all guantum states
— We provide a construct for describing sums over vectors

Measurement is not unitary
— we provide measurement predicates like probability of outcome

20

Related Work

« QWIRE [Rand et al., QPL 2017]
- Implemented in Cog
- Used to verity simple randomness generation circuits and small examples

 QBRICKS [Chareton et al., ESOP 2021]
- Implemented in Why3
- Used to verify Grover’s algorithm and Quantum Phase Estimation

* Quantum Hoare Logic (QHL) [Liu et al., CAV 2019]
- Implemented in Isabelle/HOL
- Used to verify Grover’s algorithm

27

Related Work

QWIRE QBRICKS QHL SQIR

Uses concrete indices

Special support for
unitary programs

..

General support for
measurement

SQIR is flexible, supporting multiple semantics and approaches to proof

28

This Talk

Intro to Quantum
SQIR Syntax & Semantics
Proof Engineering

Results

29

Proofs so Far

 \We have formally verified several source programs correct
- Quantum teleportation / superdense coding
- GHZ state preparation
- Deutsch-Jozsa algorithm
- Simon’s algorithm
- Grover’s search algorithm
- Quantum phase estimation

 These proofs constitute about 3.5k lines of Coqg (core of SQIR is 3.9k)

* QOur specifications and proofs follow the standard textbook arguments

30

Example: QPE

’ e

parameterized by U, k, n

* QFT;I;

] 2k:—1

 Quantum Phase Estimation: given a circuit implementing some unitary U and
an state | w) such that U | w) = e*™ | y), find @

- The key “quantum” part of Shor’s factoring algorithm
- The most sophisticated quantum algorithm verified by any current tool

 The SQIR implementation is 40 lines and the proof is 1000 lines
- Proof completed in two person-weeks

31

Example: QPE

e Correctness property in the case where 6 can be represented using
exactly k bits (call this representation 2):

Lemma QPE_correct_simplified: V k n (u : ucom base n) z (¢ : Vector 2"),
n >0 —k >1 — uc_well _typed u - WF_Matrix ¥ —
let § := z / 2F in

[u], X ¥ = e*™ % ¢p —

[QPE k n ufkin x (|0)° ® ¥) = |z) ® 9.

« Conclusion says that the running QPE on the input | 00...0) ® | y)
produces z in the first k bits

32

Example: QPE

 |f @ can not be exactly expressed using k bits, we get an approximation

. . . 4
within of the true value with probabillity at least — ~ 0.41
Vk+1 72

Lemma QPE_semantics_full : V k n (u : ucom base n) z (¢ : Vector 2") (0 : R),

n >0 —>k >1 — uc_well_typed u — Pure_State_Vector ¥ —
-1 /2 < § <1 /2 55 £0 >

let § :=2z / 2" + § in

[u]. x ¥ = e*™ % ¢ —

prob_partial_meas |z) ([QPE k n ulzyn X (|0)* ® ¥)) > 4 / =2.

33

Future Directions

e Extract verified SQIR programs to executable OpenQASM circuits

- Requires careful thought about gate sets and the implementation of
“control” and "adjoint” functions to produce reasonably efficient code

» \erify near-term quantum algorithms
- Requires better handling for approximate algorithms

- May need to account for errors — requires density matrices

* Higher-level abstractions for describing quantum programs and
specifications?

34

Conclusions

Formal verification for guantum programs is a recent area of interest
- Recent work includes QWIRE, QBRICKS, QHL

- SQIR is one of the most successful examples to date

- This Iis an open field!

GitHub repository: github.com/inQWIRE/SQIR Pull requests welcome!

Full version of the ITP paper: arxiv:2010.01240

POPL 2021 paper on optimizing SQIR programs: arxiv:1912.02250

35

https://github.com/inQWIRE/SQIR
https://arxiv.org/pdf/2010.01240.pdf
https://arxiv.org/pdf/1912.02250.pdf

