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Background: Separation Logic
• An extension of Hoare Logic with additional operators including  

(“separating conjunction”), which describes disjoint parts of the heap


•  says that variables x and y both have value 0, and that 
they are distinct (i.e., not aliases of each other)

⋆

{x ↦ 0 ⋆ y ↦ 0}

• The frame rule supports scalable reasoning


• Allows us to prove a “local” property  and extend it to a “global” 
property 

{P} C {Q}
{P ⋆ R} C {Q ⋆ R}
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{P} C {Q}
{P ⋆ R} C {Q ⋆ R} , mod(C) ∩ fv(R) = ∅



Quantum Separation Logic?
•  describes separability of quantum states


•  says that we can partition the global state  into  and  such 
that  holds of ,  holds of , and 


• Provides a convenient notation for describing whether states are entangled


• Allows us to reason modularly about parts of the state that are not 
entangled

⋆
P1 ⋆ P2 Ψ Ψ1 Ψ2

P1 Ψ1 P2 Ψ2 Ψ = Ψ1 ⊗ Ψ2

• Proposed by Zhou at el. (2021) and Le et al. (2022)


• But no implementation
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https://ieeexplore.ieee.org/document/9470673
https://dl.acm.org/doi/10.1145/3498697


F*: A Proof-Oriented Programming Language
• F* is a functional programming language and proof  

assistant from Microsoft Research


• Uses the Z3 solver in the backend for automation

• Steel (Fromherz et al. (2021)) is an F* implementation of a concurrent 
separation logic


• By building on top of Steel, we get a framework for the  operator and 
frame rule “for free”

⋆

https://www.fstar-lang.org/
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https://dl.acm.org/doi/abs/10.1145/3473590
https://www.fstar-lang.org/


Modeling Quantum State
• In order to interpret  in Steel’s separation logic, we need a model of 

quantum state & a partial commutative monoid over it
⋆

• We define a type qvec qs, which is a wrapper around a complex vector of 
length  with a commutative definition of tensor


• Our underlying matrix library is a port of the QuantumLib library (used in 
SQIR and QWIRE) from Coq to F*


• Our commutative definition of tensor is a work-in-progress, but our idea is 
to apply the standard Kronecker product followed by a permutation matrix  
to maintain a fixed ordering of qubits

2|qs|
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https://github.com/inQWIRE/QuantumLib


Q* = F* with Quantum Actions
• We introduce a predicate  , which says that the set of qubits    are 

collectively in state  (and, implicitly, unentangled with outside qubits)
q ↦ ∣ψ⟩ q

∣ψ⟩
• We define four quantum actions

• And an entailment rule
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{ emp } @  alloc { @ 7! |0i }
{ @ 7! |k i } discard @ { emp }

{ @ [ @ 7! |k i } 1  measure @ { @ 7! |1i ¢@ 7! disc(@,1, |k i) }
{ @ 7! |k i } apply G @ { @ 7! ⌧ |k i }

Fig. 1. Pre- and postconditions of Q¢ actions.

onto the state where @ is in state |1i is nonzero. In the postcondition, disc(@,1, |k i) projects out
the qubit @, assuming it is in state |1i.
The key predicate for reasoning about Q¢ programs is the “points-to” relation @ 7! |k i, which

says that the set of qubits @ are in the state |k i. In the case where @ is empty, we write emp. We
adopt the separating conjunction¢ from separation logic [Reynolds 2002]; %1 ¢%2 says that we can
partition the global quantum state  to produce  1 and  2 so that %1 holds of  1, %2 holds of  2,
and  =  1 ⌦  2. ¢ is commutative and % ¢ emp = % . The predicate @ 7! |k i implies that qubits in
@ are not entangled with qubits in the rest of the program; if they were entangled with some other
qubit @0 8 @, then we would need to write @0 [ @ 7! |qi for some |qi.

When using the separating conjunction ¢, a key inference rule is the frame rule, which says that
if we have a proof that program 2 takes predicate % to& (i.e., { % } 2 { & }), then we can derive that it
takes % ¢' to& ¢' ({ % ¢' } 2 { & ¢' }), assuming no variable occurring free in ' is modi�ed by 2 .
This allows us to extend a local speci�cation (like % ,&) to a global one (%¢',&¢'). As an example,
say that we have a program that applies a Hadamard � gate to qubit @ and we know that @ is
initially in state |k i (i.e., @ 7! |k i). After the program executes, we will have that @ 7! � |k i. Using
the frame rule, we can extend this speci�cation to a larger program that also includes qubit @0: Say
that initially @0 7! |qi, then after the program executes, we can conclude that @0 7! |qi¢@ 7! � |k i.
In other words, the program acting on @ has no e�ect on @0.
In addition to applying the frame rule, we may also need to manually manipulate the matrix

expressions inside predicates and selectively apply the following entailment rule:

@1 [ @2 7! |k1i@1 ⌦ |k2i@2 () (@1 7! |k1i) ¢ (@2 7! |k2i).
Applying this rule may require reasoning about a state |k i to show that it has the form |k1i@1⌦ |k2i@2
for some @1 and @2.

2 EXAMPLE: TELEPORTATIONWITH ENTANGLEMENT
The goal of quantum teleportation is to transfer a quantum state from one party (Alice) to another
(Bob) using only pre-shared quantum entanglement and two classical bits of information. The
protocol uses three qubits: qA, which belongs to Alice; qB, which belongs to Bob; and qM, which
contains the state that Alice wants to transfer to Bob. At the end of the protocol, qA and qMwill be in
some classical state (having been measured by the protocol) and qB will match the original state of
qM. Importantly, if qMwas initially entangled with some other set of qubits qs, then after the protocol
qB will end up entangled with qs instead. This provides a way to set up entanglement between
parties that cannot directly interact, which is a key requirement for the quantum internet [Hermans
et al. 2022]. Prior work [Boender et al. 2015; Hietala et al. 2021a; Rand et al. 2018] has veri�ed the
teleportation protocol, but not with a general speci�cation allowing qM to be entangled with other
(external) qubits.

The Q¢ speci�cation for teleport is shown in Listing 1. It takes four inputs, two of which are
implicit (marked with #). Type qbit is a qubit identi�er and type qbits is a set of type qbit. qvec
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Example: Quantum Teleportation (written in Microsoft’s Q# language)
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operation is automatically

“adjointable” arguments return typequantum gates

measurement

classical control flow

qubit allocation

implicit deallocation

adjoint operation



Example: Quantum Teleportation

8

let (b1,b2) = SendMsg(qA,qM)

{qM ∪ q̄ ↦ ∣ϕ⟩ ⋆ {qA, qB} ↦ 1
2

( ∣00⟩ + ∣11⟩)}

{qM ↦ ∣b1⟩ ⋆ qA ↦ ∣b2⟩ ⋆ qB ∪ q̄ ↦ Zb1
qB

Xb2
qB

∣ϕ⟩}

{qA ↦ ∣0⟩ ⋆ qB ↦ ∣0⟩} Entangle(qA, qB) {{qA, qB} ↦ 1
2

( ∣00⟩ + ∣11⟩)}

Teleport(qM, qB) {qB ∪ q̄ ↦ ∣ϕ⟩}{qM ∪ q̄ ↦ ∣ϕ⟩ ⋆ qB ↦ ∣0⟩}

DecodeMsg(qB, (b1,b2)) {qB ∪ q̄ ↦ Xb2
qB

Zb1
qB

∣ϕ⟩}{qB ∪ q̄ ↦ ∣ϕ⟩}



Q¢: Implementing�antum Separation Logic in F¢

Listing 1. Pre�ified Q¢ type for teleportation.
val teleport (#qs:qbits)

(qM:qbit{ disjoint {qM} qs })

(#st:qvec (union {qM} qs))

(qB:qbit{ qB <> qM /\ disjoint {qB} qs })

: STT unit

(pts_to (union {qM} qs) st �star � pts_to {qB} (ket _ false ))
(fun _ -> pts_to (union {qB} qs) st)

{ @� 7! |0i ¢@⌫ 7! |0i }
Entangle(qAlice , qBob)

{ {@�,@⌫} 7! 1p
2
( |00i + |11i) }

{ @" [ @ 7! |k i ¢ {@�,@⌫} 7! 1p
2
( |00i + |11i) }

let (b1, b2) = SendMsg(qAlice , qMsg)

{ @" 7! |11i ¢@� 7! |12i ¢@⌫ [ @ 7! /11
@⌫-

12
@⌫ |k i }

{ @⌫ [ @ 7! |qi }
DecodeMsg(qBob , classicalBits );

{ @⌫ [ @ 7! -12
@⌫/

11
@⌫ |qi }

(a) Specifications for subroutines

{ @� 7! |0i ¢@⌫ 7! |0i }
{ {@�,@⌫} 7! |00i }
H(qAlice );

{ {@�,@⌫} 7! �@� |00i }
CNOT(qAlice , qBob);

{ {@�,@⌫} 7! ⇠#$)@�,@⌫�@� |00i }
{ {@�,@⌫} 7! 1p

2
( |00i + |11i) }

(b) Proof sketch for Entangle

Fig. 2. Specifications for teleport subroutines. @� , @⌫ , and @" refer to Alice and Bob’s initial qubits and the
message qubit, respectively. The expression"1 is equal to" if 1 is true and � (the identity matrix) if 1 is false.
A subscript on a matrix expression,"@ , indicates that the matrix is applied only to qubit @; multiplication
extends the matrix to the full dimension via padding.

qs is a vector state indexed by the qubit set qs. The type STT a pre post describes a Steel program
with return type a. If the initial state satis�es the precondition pre, then after execution the state is
guaranteed to satisfy postcondition post, which is a function over the return value. In the case of
teleport, the return type is unit, so the return value can be ignored. In plain text, the speci�cation
in Listing 1 says that if qM is initially in some (possibly entangled) state st and qB is in the state |0i,
then after the protocol qB will be in state st.

We summarize the pre- and post-conditions for each component of teleport (using the operation
names in Listing 2, described below) in Figure 2(a). In Figure 2(b), we sketch the proof that the
Entangle subroutine matches its speci�cation.
{ @" [ @ 7! |k i ¢@⌫ 7! |0i } Teleport(qMsg, qBob) { @⌫ [ @ 7! |k i }

3 LONG-TERM VISION: FORMAL VERIFICATION FOR Q#
A broader goal of our work is to provide formal veri�cation for Microsoft’s high-level quantum programming language,
Q# [Heim 2020; Svore et al. 2018], and our design of Q¢ re�ects this. Listing 2 shows the implementation of quantum
teleportation in Q#. As can be seen, Q# is a hybrid imperative/functional language with a special type for quantum state
(Qubit) and operations that act on the quantum state (e.g., H, CNOT, M, use). Our Q¢ encoding of the teleport program is
similar, except that it includes more sophisticated type annotations and intermediate calls to lemmas.

Figure 3 presents our vision to integrate Q¢ into the Q# toolchain: (1) Users write their programs in Q#, taking advantage
of the many features available in Microsoft’s Quantum Development Kit; (2) The Q# program is translated into Q¢ and
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Prototype Implementation
• Available at github.com/microsoft/qsharp-verifier/tree/sep-logic


• Not under active development, but open to contributions!

• Type for teleport:
“other” qubits in the environment (implicit)

message qubit, distinct from qs

initial state of qM and qs (implicit)

Bob’s qubit, distinct from qs and qM
Steel return type is unit

precondition:  

Q¢: Implementing�antum Separation Logic in F¢
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( |00i + |11i) }
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@⌫-

12
@⌫ |k i }
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@⌫/
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A subscript on a matrix expression,"@ , indicates that the matrix is applied only to qubit @; multiplication
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qs is a vector state indexed by the qubit set qs. The type STT a pre post describes a Steel program
with return type a. If the initial state satis�es the precondition pre, then after execution the state is
guaranteed to satisfy postcondition post, which is a function over the return value. In the case of
teleport, the return type is unit, so the return value can be ignored. In plain text, the speci�cation
in Listing 1 says that if qM is initially in some (possibly entangled) state st and qB is in the state |0i,
then after the protocol qB will be in state st.

We summarize the pre- and post-conditions for each component of teleport (using the operation
names in Listing 2, described below) in Figure 2(a). In Figure 2(b), we sketch the proof that the
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postcondition: 

Q¢: Implementing�antum Separation Logic in F¢

Listing 1. Pre�ified Q¢ type for teleportation.
val teleport (#qs:qbits)

(qM:qbit{ disjoint {qM} qs })

(#st:qvec (union {qM} qs))

(qB:qbit{ qB <> qM /\ disjoint {qB} qs })

: STT unit
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@⌫ |qi }

(a) Specifications for subroutines

{ @� 7! |0i ¢@⌫ 7! |0i }
{ {@�,@⌫} 7! |00i }
H(qAlice );

{ {@�,@⌫} 7! �@� |00i }
CNOT(qAlice , qBob);

{ {@�,@⌫} 7! ⇠#$)@�,@⌫�@� |00i }
{ {@�,@⌫} 7! 1p

2
( |00i + |11i) }

(b) Proof sketch for Entangle

Fig. 2. Specifications for teleport subroutines. @� , @⌫ , and @" refer to Alice and Bob’s initial qubits and the
message qubit, respectively. The expression"1 is equal to" if 1 is true and � (the identity matrix) if 1 is false.
A subscript on a matrix expression,"@ , indicates that the matrix is applied only to qubit @; multiplication
extends the matrix to the full dimension via padding.

qs is a vector state indexed by the qubit set qs. The type STT a pre post describes a Steel program
with return type a. If the initial state satis�es the precondition pre, then after execution the state is
guaranteed to satisfy postcondition post, which is a function over the return value. In the case of
teleport, the return type is unit, so the return value can be ignored. In plain text, the speci�cation
in Listing 1 says that if qM is initially in some (possibly entangled) state st and qB is in the state |0i,
then after the protocol qB will be in state st.

We summarize the pre- and post-conditions for each component of teleport (using the operation
names in Listing 2, described below) in Figure 2(a). In Figure 2(b), we sketch the proof that the
Entangle subroutine matches its speci�cation.
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teleportation in Q#. As can be seen, Q# is a hybrid imperative/functional language with a special type for quantum state
(Qubit) and operations that act on the quantum state (e.g., H, CNOT, M, use). Our Q¢ encoding of the teleport program is
similar, except that it includes more sophisticated type annotations and intermediate calls to lemmas.

Figure 3 presents our vision to integrate Q¢ into the Q# toolchain: (1) Users write their programs in Q#, taking advantage
of the many features available in Microsoft’s Quantum Development Kit; (2) The Q# program is translated into Q¢ and
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https://github.com/microsoft/qsharp-verifier/tree/sep-logic
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 let teleport 
  = let qA = alloc () in 
    disjointness (single qA) (single qB) #_; 
    disjointness (single qA) (union (single qM) qs) #_; 
    entangle qA qB; 
    let bits = send_msg qA qM #_ in 
    decode_msg qB qs bits; 
    discard qA _; 
    discard qM _;  
    teleport_lemma (fst bits) (snd bits) qB qs  
                   (relabel_indices (union (single qB) qs) state); 
    rewrite (pts_to (union (single qB) qs) _) 
            (pts_to (union (single qB) qs)  
                    (relabel_indices (union (single qB) qs) state)) 

Prototype Implementation

code proof



Additional Applications
• Discard safety


• A qubit must be unentangled when deallocated


• Qubit resetting and reuse


• Confirm that a qubit is in the  state on discard


• No cloning


• Check whether qubits alias one another


• More in Kesha’s thesis: https://khieta.github.io/files/drafts/khieta-
dissertation.pdf

∣0⟩
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https://khieta.github.io/files/drafts/khieta-dissertation.pdf
https://khieta.github.io/files/drafts/khieta-dissertation.pdf
https://khieta.github.io/files/drafts/khieta-dissertation.pdf
https://khieta.github.io/files/drafts/khieta-dissertation.pdf


Future Directions
• Verify more interesting classical/quantum programs


• Idea: Use Steel to reason about hybrid quantum/classical concurrent 
programs


• Fix rough edges in the implementation (many admits in our lin. algebra code)


• Integrate Q* into the Q# toolchain
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Listing 2. Teleportation in Q#, adapted from the �antum Katas [Mykhailova 2020]. Adj marks an operation
as adjointable, and Adjoint applies its adjoint.
operation Entangle (qAlice : Qubit , qBob : Qubit) : Unit is Adj {

H(qAlice );
CNOT(qAlice , qBob);

}

operation SendMsg (qAlice : Qubit , qMsg : Qubit) : (Bool , Bool) {

Adjoint Entangle(qMsg , qAlice );

let m1 = M(qMsg);
let m2 = M(qAlice );
return (m1 == One , m2 == One);

}

operation DecodeMsg (qBob : Qubit , (b1 : Bool , b2 : Bool)) : Unit {

if b1 { Z(qBob); }

if b2 { X(qBob); }

}

operation Teleport (qMsg : Qubit , qBob : Qubit) : Unit {

use qAlice = Qubit ();
Entangle(qAlice , qBob);

let classicalBits = SendMsg(qAlice , qMsg);

DecodeMsg(qBob , classicalBits );

}

Q#

Q*

translate 
to

proof succeeds, 
compile source

proof fails, 
refine source

QIR

Fig. 3. Overview of (proposed) toolchain for Q#.

various properties are proved about the Q¢ representation; (3a) If the proofs succeed, then the original Q# program is
compiled to Microsoft’s QIR [Geller 2020] or simulated on a classical machine; (3b) If the proofs fail, then the Q# code is
re�ned.

The kinds of properties we might prove about Q¢ programs include correctness speci�cations, like the one for teleport
above, or simpler, Q#-speci�c well-formedness properties. One such property, naturally enforced by a separation logic, is
discard safety. It is “safe” to discard a qubit when it is not entangled with any other qubits in the program. In Q#, qubits are
implicitly discarded at the end of their lexical scope (e.g., in Listing 2, qAlice is discarded at the end of Teleport’s body).
Discarding an entangled qubit results in an implicit measurement of that qubit, which may change the rest of the program
state in unintended ways. To avoid this, the Q# simulator enforces at runtime that discarded qubits are unentangled with
the rest of the computation and, additionally, that they are in a classical state. Q¢’s precondition on discard (Figure 1)
enforces that the input qubit is unentangled, so proving a property about a program using our separation logic naturally
guarantees discard safety.

In some cases, checking for discard safety is easy (e.g., when a qubit is measured before being discarded, or only subject
to single-qubit gates), but this is not always the case due to the use of uncomputation. It is common practice in quantum
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Code available at: github.com/microsoft/qsharp-verifier

Separation logic w/ teleport example in the sep-logic branch

https://github.com/microsoft/qsharp-verifier

