QIRs for Formal Verification

QCE21 Workshop on Quantum Intermediate Representations October 22nd, 2021

Kesha Hietala University of Maryland, College Park

About me

- 6th year PhD student at the University of Maryland, College Park
 - On the job market!
- Interested broadly in formal verification, compilers, and static analysis
- For my PhD I've been applying formal verification to the quantum software toolchain
- Spent last summer interning for Microsoft (remotely) thinking about how to apply formal verification to Q#

Motivation

SQIR – a QIR designed for verification

VOQC – a verified compiler

IRs for oracles

Concluding thoughts

This talk

Formal verification

- Formal verification is the process of proving that a program matches a specification (e.g., in a proof assistant)
 - More expensive than testing, but provides stronger correctness guarantees
- When should you use formal verification?
 - Code has an impact on human well-being (avionics, crypto)
 - Code is "trusted" (compilers, operating systems)
 - Code is hard to test (compilers, quantum)
 - Running incorrect code wastes significant resources (quantum)

Formal verification for quantum

- Quantum computing is an interesting application area for formal verification
 - Simulation is expensive
 - Hardware is noisy
 - Can't inspect (i.e., measure & print) intermediate state
 - Not intuitive (entanglement may lead to unintended state updates)
 - Formal verification provides the possibility for software assurance, *without having to run the software*
- Increasingly popular topic in the academic community: <u>Quantum Hoare Logic</u> (TOPLAS 2012), <u>QWIRE</u> (POPL 2017), <u>Quantum Relational Hoare Logic</u> (POPL 2019), <u>VOQC</u> (POPL 2021), <u>SQIR</u> (ITP 2021), <u>QBRICKS</u> (ESOP 2021)

hard to test!

Motivation

SQIR – a **QIR** designed for verification

VOQC – a verified compiler

IRs for oracles

Concluding thoughts

This talk

SQIR

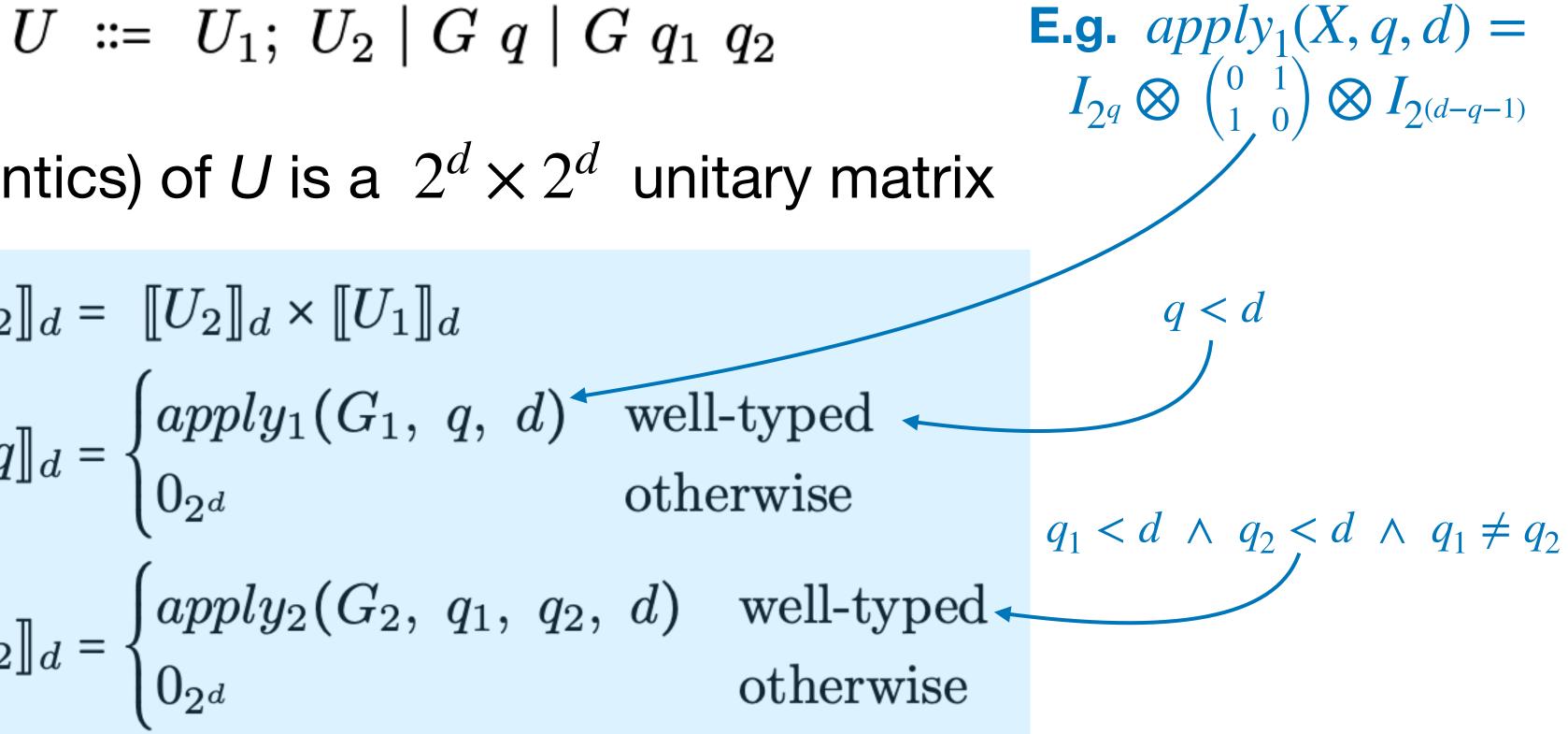
- SQIR is a Simple Quantum Intermediate Representation for expressing quantum circuits + libraries for reasoning about quantum programs in the Coq Proof Assistant
- Presented as the intermediate representation of a verified compiler (à la CompCert) at POPL 2021 (<u>arxiv:1912.02250</u>)
- Presented as a source language for verified quantum programming at ITP 2021 (<u>arxiv:2010.01240</u>)
- Code available at <u>github.com/inQWIRE/SQIR</u>

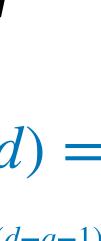
Unitary SQIR

• The denotation (semantics) of U is a $2^d \times 2^d$ unitary matrix

$$\begin{bmatrix} U_{1}; \ U_{2} \end{bmatrix}_{d} = \begin{bmatrix} U_{2} \end{bmatrix}_{d} \times \begin{bmatrix} G_{1} \ q \end{bmatrix}_{d} = \begin{cases} apply_{1} \\ 0_{2^{d}} \end{bmatrix}$$
$$\begin{bmatrix} G_{2} \ q_{1} \ q_{2} \end{bmatrix}_{d} = \begin{cases} apply_{2} \\ 0_{2^{d}} \end{bmatrix}$$

• Semantics parameterized by gate set G and dimension d of a global register





Non-unitary SQIR

- Semantics parameterized by gate set G and dimension d of a global register
 - $P := \text{skip} | P_1; P_2 | U | \text{meas } q P_1 P_2$
- The denotation of P is a function over $2^d \times 2^d$ density matrices
 - $\{ | \text{skip} \}_d(\rho) = \rho$
 - $\{P_1; P_2\}_d(\rho) = (\{P_2\}_d \circ \{P_1\}_d)(\rho)$ $\{ [U] \}_d(\rho) = [[U]]_d \times \rho \times [[U]]_d^{\dagger}$ + $\{P_1\}_d(|1\rangle_q\langle 1| \times \rho \times |1\rangle_q\langle 1|)$
 - $\{ | \text{meas } q P_1 P_2 | \}_d(\rho) = \{ | P_2 | \}_d(|0\rangle_q \langle 0| \times \rho \times |0\rangle_q \langle 0|)$

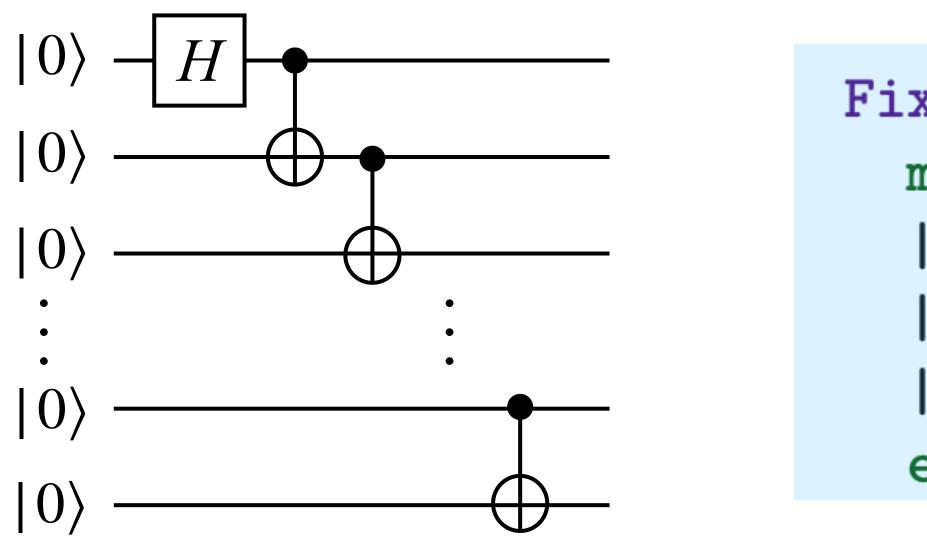
9

Standard semantics; also used in QHL¹ and QWIRE²

¹ Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012. ² Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.

SQIR metaprogramming

 SQIR programs just express circuits. We can express parameterized circuit families using Coq as a meta programming language



whose semantics is the n-qubit GHZ state

Fixpoint ghz (n : \mathbb{N}) : ucom base n := match n with $| 0 \Rightarrow SKIP$ $| 1 \Rightarrow H 0$ | S n' \Rightarrow ghz n'; CNOT (n'-1) n' end.

• The ghz Coq function returns a SQIR program (of type ucom base n)

Proofs of correctness in Coq

- where $|GHZ^n\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} + |1\rangle^{\otimes n})$

Definition GHZ (n : \mathbb{N}) : Vector (2 ^ n) := match n with $| 0 \Rightarrow I 1$ | S n' $\Rightarrow \frac{1}{\sqrt{2}} * |0\rangle^{\diamond}$ end.

Lemma ghz_correct : \forall n : \mathbb{N} , $n > 0 \rightarrow [[ghz n]]_n \times |0\rangle^{\otimes n} = GHZ n.$ Proof.

• • •

Qed.

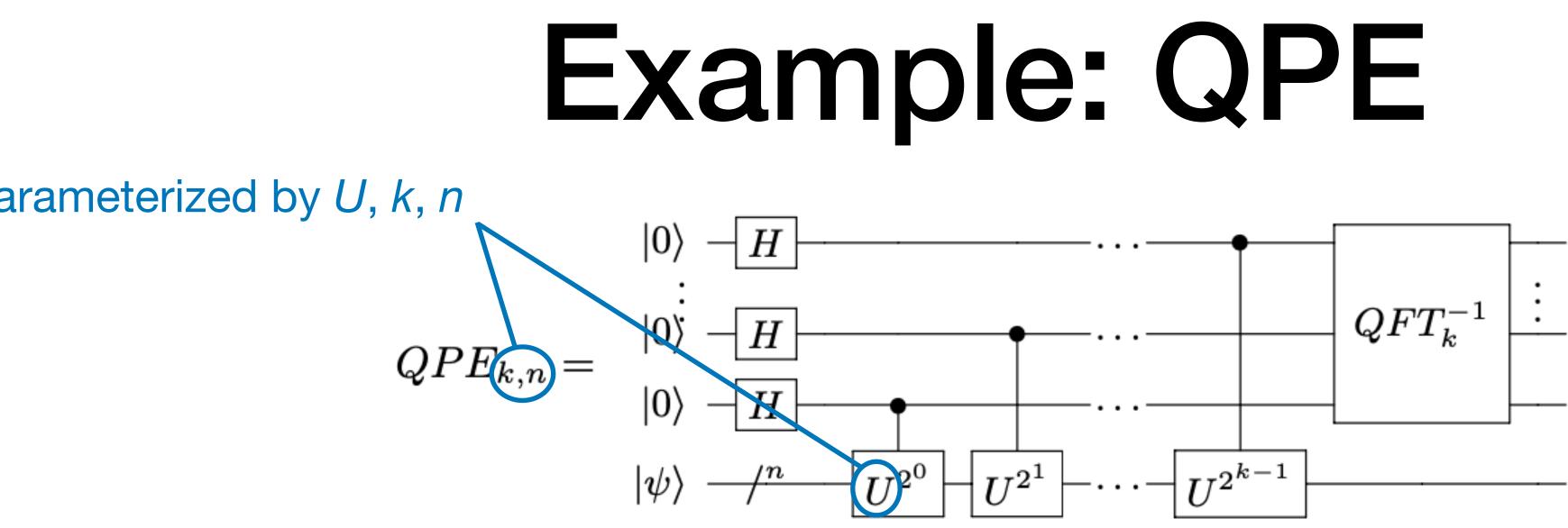
• We might like to prove that evaluating ghz n on $|0\rangle^{\otimes n}$ produces $|GHZ^n\rangle$

$$^{\otimes n}$$
 + $\frac{1}{\sqrt{2}}$ * $|1\rangle^{\otimes n}$

Proofs so far

- To date, we have formally verified:
 - Quantum teleportation / superdense coding
 - GHZ state preparation
 - Deutsch-Jozsa algorithm
 - Simon's algorithm
 - Grover's search algorithm
 - Quantum phase estimation (key part of Shor's algorithm)
- These proofs as well as the basic support of SQIR (lemmas, tactics, etc.) constitute about 3500 lines of Coq code

parameterized by U, k, n



- Quantum Phase Estimation: given a circuit implementing some unitary U and igodola state $|\psi\rangle$ such that $U|\psi\rangle = e^{2\pi i\theta} |\psi\rangle$, find θ
 - The key "quantum" part of Shor's factoring algorithm
 - The most sophisticated quantum algorithm verified by any current tool
- The SQIR implementation is 40 lines and the proof is 1000 lines - Proof completed in two person-weeks

Example: QPE

• Correctness property in the case where θ can be represented using exactly k bits (call this representation z):

 $\texttt{n} > \texttt{0} \rightarrow \texttt{k} > \texttt{1} \rightarrow \texttt{uc_well_typed} ~\texttt{u} \rightarrow \texttt{WF_Matrix} ~\psi \rightarrow$ let θ := z / 2^k in $\llbracket \mathbf{u} \rrbracket_n \ \times \ \psi \ = \ e^{2\pi i \theta} \ \ast \ \psi \ \rightarrow$ $\llbracket \mathsf{QPE} \ \mathtt{k} \ \mathtt{n} \ \mathtt{u} \rrbracket_{k+n} \ \times \ (|\mathsf{0}\rangle^k \ \otimes \ \psi) \ = \ |\mathtt{z}\rangle \ \otimes \ \psi.$

• Conclusion says that the running QPE on the input $|00...0\rangle \otimes |\psi\rangle$ produces z in the first k bits

Lemma QPE_correct_simplified: \forall k n (u : ucom base n) z (ψ : Vector 2^n),

Example: QPE

• If θ cannot be exactly expressed using k bits, we get an approximation within $\frac{1}{2^{k+1}}$ of the true value with probability at least $\frac{4}{\pi^2} \approx 0.41$

<code>n > 0 ightarrow k > 1 ightarrow uc_well_typed u ightarrow Pure_State_Vector ψ ightarrow</code> -1 / $2^{k+1} \leq \delta < 1$ / $2^{k+1} \rightarrow \delta \neq 0 \rightarrow$ $\operatorname{let}' \theta \ := \mathbf{z} \ / \ 2^k \ + \ \delta \ \operatorname{in}$ $\llbracket \mathbf{u} \rrbracket_n \times \psi = e^{2\pi i\theta} \ast \psi \rightarrow$ prob_partial_meas $|z\rangle$ ([QPE k n u]] $_{k+}$

 δ is the error in representing θ

Lemma QPE_semantics_full : orall k n (u : ucom base n) z (ψ : Vector 2^n) (δ : R),

$$_{\vdash n}$$
 $imes$ ($|0
angle^k$ \otimes ψ)) \geq 4 / π^2 .

Motivation

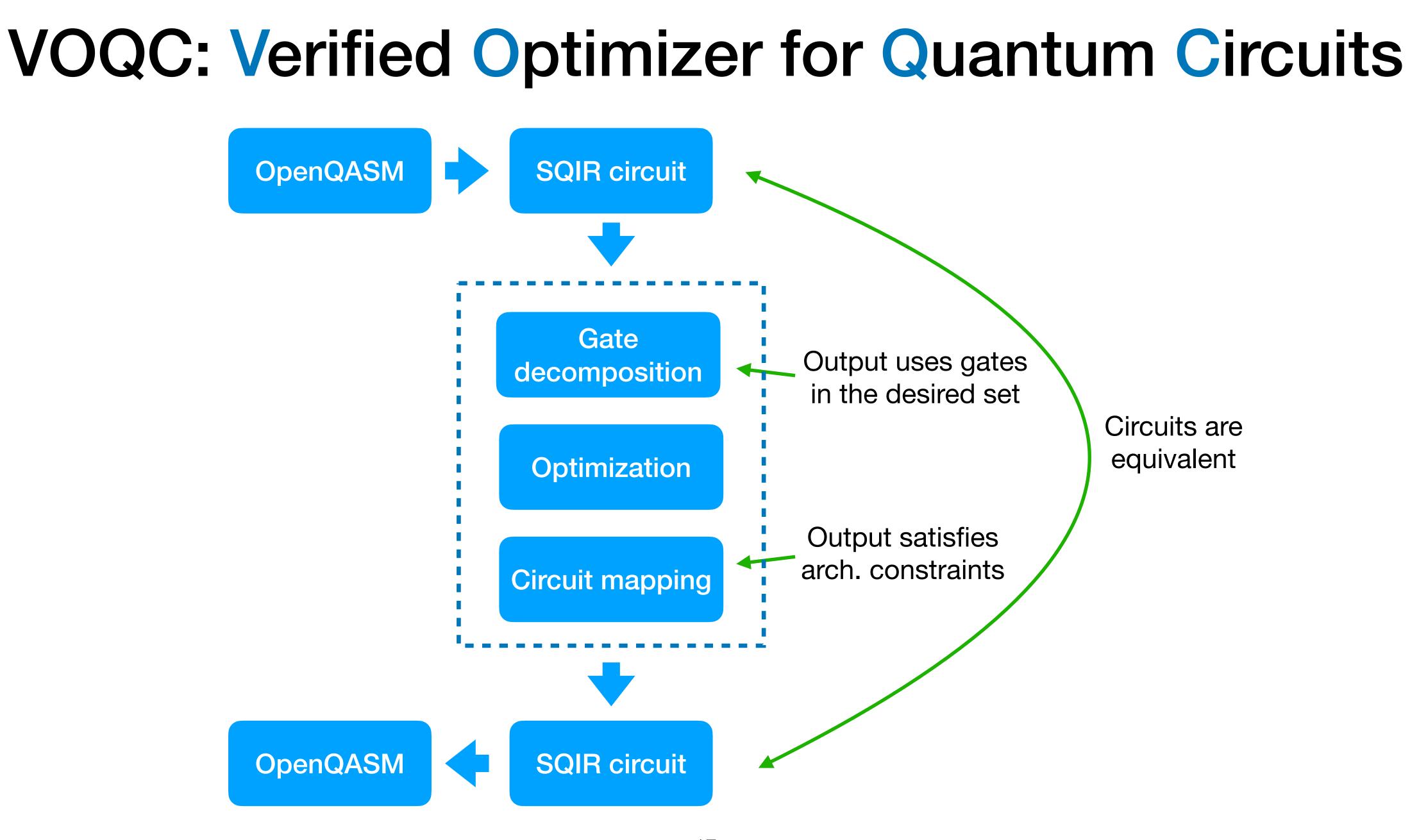
SQIR – a QIR designed for verification

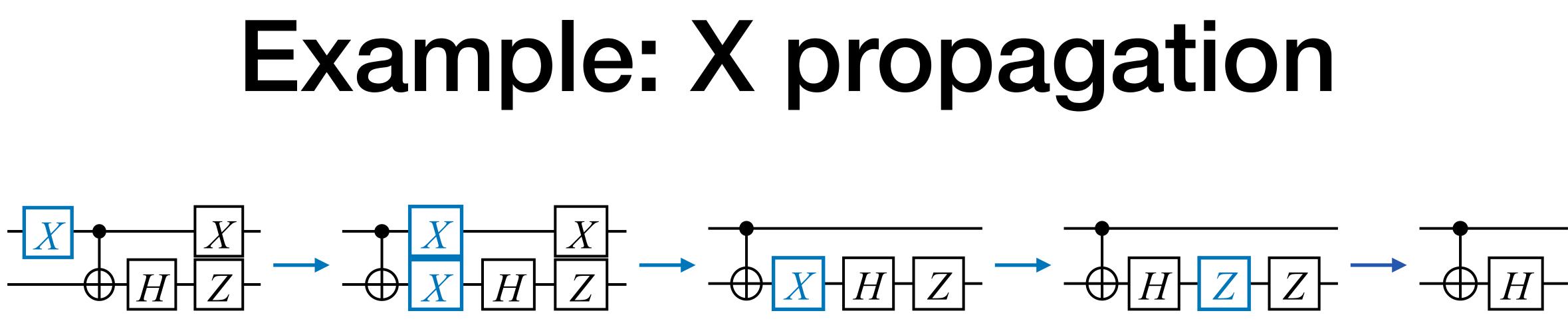
VOQC – a verified compiler

IRs for oracles

Concluding thoughts

This talk



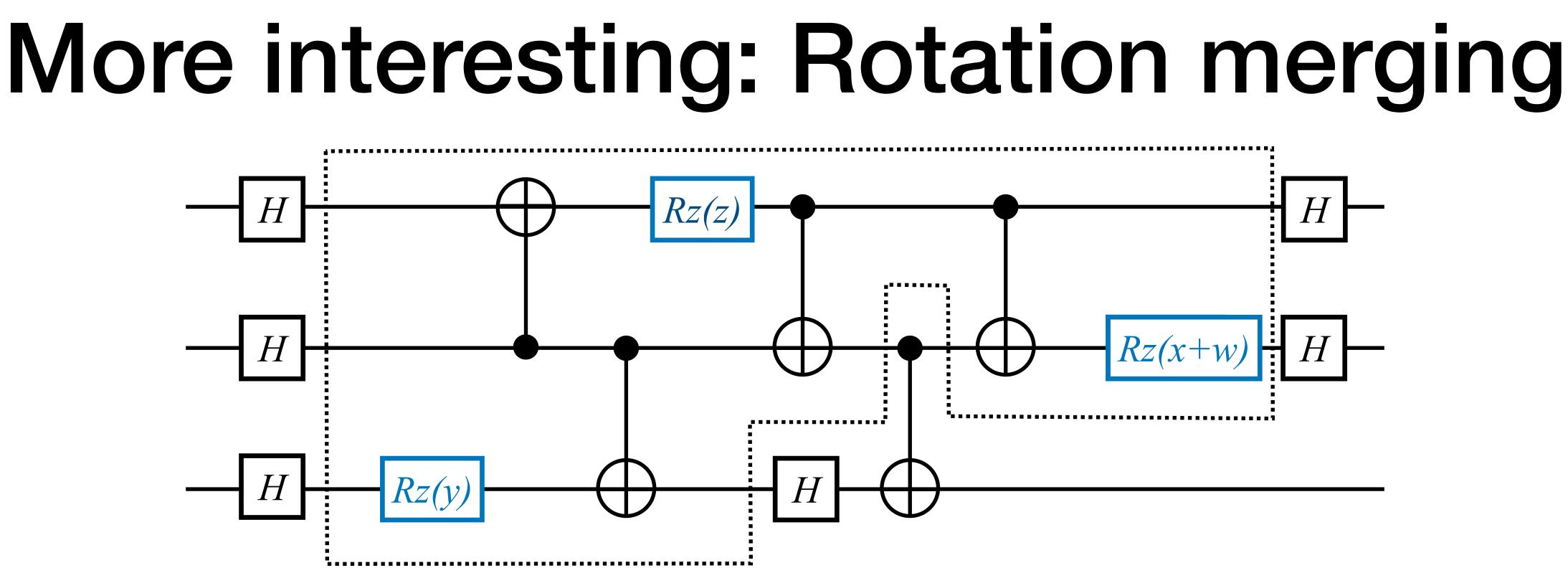


- Based on Nam et al¹ "not propagation"
- We verify semantics-preservation
 - change
- We prove this via induction on the structure of the input program
 - ~30 lines to implement optimization
 - ~270 lines to prove semantics-preservation

¹Nam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.

- At each step, the denotation of the program (i.e. unitary matrix) does not

18



- Based on Nam et al rotation merging \bullet
- Combines Rz gates in arbitrary {Rz, CNOT} sub-circuits ~100 lines to implement optimization - ~920 lines to prove semantics-preservation

- a benchmark by Amy et al.⁴
 - IBM Qiskit Terra v0.15.12¹
 - Cambridge CQC tket v0.6.0²
 - Nam et al.,³ both L and H levels (used by lonQ)
 - Amy et al.⁴
 - PyZX v0.6.0⁵

Evaluation

- 1 https://giskit.org/
- 2 https://cqcl.github.io/pytket/build/html/ir
- 3 https://arxiv.org/pdf/1710.07345.pdf
- 4 https://arxiv.org/pdf/1303.2042.pdf
- 5 https://github.com/Quantomatic/pyzx

Compared our verified optimizer against existing unverified optimizers on

nd	lex.	h	tm	

Geo. mean compilation times						
Qiskit ¹	tket ²	Nam ³ (L)	Nam (H)	Amy ⁴	PyZX ⁵	VOQC
0.812s	0.129s	0.002s	0.018s	0.007s	0.384s	0.013s

Geo. mean reduction in gate count				
Qiskit	tket	Nam (H)	VOQC	
10.1%	10.6%	24.8%	17.8%	

VOQC only outperformed by Nam

Results

- 1 <u>https://qiskit.org/</u> 2 <u>https://cqcl.github.io/pytket/build/html/in</u> 3 <u>https://arxiv.org/pdf/1710.07345.pdf</u> 4 <u>https://arxiv.org/pdf/1303.2042.pdf</u> 5 <u>https://github.com/Quantomatic/pyzx</u>

VOQC is the same ballpar

Geo mean. reduction in T gate count				
Amy	my PyZX Nam (H)		VOQC	
39.7%	42.6%	41.4%	41.4%	

VOQC only outperformed by PyZX

nd	ex.	hti	ml
		IICI	

7			
		7	
	Ś		
	1		

Motivation

SQIR – a QIR designed for verification

VOQC – a verified compiler

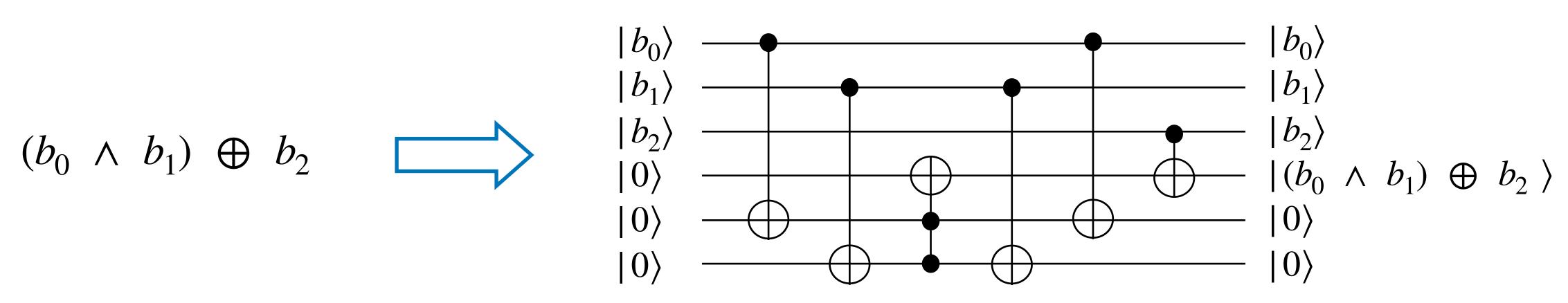
IRs for oracles

Concluding thoughts

This talk

Motivation: Verifying oracles

- Many quantum programs rely on *oracles*, classical functions evaluated on quantum data
 - E.g., Deutsch-Jozsa algorithm, Shor's factoring algorithm
- Rather than verifying the oracle circuit directly, it's easier to verify the oracle in a special-purpose IR first and then used a verified compiler



RCIR: Reversible Circuit IR

 We developed RCIR, a language for describing Boolean functions with a proved-correct compiler to SQIR

$$R := skip \mid Xn \mid ct$$

- We use RCIR to define the modular multiplication oracle in our full implementation of Shor's algorithm
 - Project lead by Yuxiang Peng (UMD), draft in preparation

 $trl nR \mid swap mn \mid R_1; R_2$

PQASM: "phase-space" QASM

Positionp::=(x, n)Nat. Num n m iVariable xInstruction ι ::=ID $p \mid X p \mid RZ n p \mid RZ^{-1} n p \mid SR n x$

compiler from PQASM to SQIR - Project lead by Livi Li (UMD), draft available upon request

• We are also working on a new IR that allows some non-classical operations (e.g., Hadamard transform, QFT) while still being efficiently simulatable

> | SR⁻¹ n x | CNOT p p | ι ; ι | QFT x | QFT⁻¹ x $H x | CU p \iota | Lshift x | Rshift x | Rev x$

• We prove properties about PQASM programs first, and then use a verified

Motivation

SQIR – a QIR designed for verification

VOQC – a verified compiler

IRs for oracles

Concluding thoughts

This talk

Lessons learned

- Formal verification requires a well-defined semantics so it is naturally easier to verify small, domain-specific (sub-)languages like SQIR, RCIR, and PQASM

 - Restricts language features & interoperability with other compilers - Larger languages may be ok with comprehensive documentation
- A matrix-based semantics requires a mapping from program "variables" to matrix/vector indices. This requires forsaking variables (SQIR) or reasoning about the allocation of variables to indices (PQASM)
 - Restricts IR design
 - An indication that matrices are not the right approach?

Moving forward

- In order to scale up to industry-grade IRs like QIR, we may be able to reuse existing verified IR frameworks
 E.g., the <u>Vellvm project</u> out of UPenn provides a semantics for LLVM
- Alternatively, we might choose to verify properties simpler than full semantic correctness. E.g.,
 - Qubits are used linearly
 - Qubits are unentangled when they are discarded
- During my internship with Microsoft, we wrote a plugin for the Q# compiler to automatically check some of these simpler properties

Get involved

- Our code is available online: github.com/inQWIRE/SQIR
 - Pull requests & issues welcome!
- ITP 2021 paper on verifying SQIR programs: <u>arxiv:2010.01240</u>
- POPL 2021 paper on optimizing SQIR programs with VOQC: arxiv:1912.02250

- Collaborators:
 - Mike Hicks (UMD)
 - Shih-Han Hung (UT Austin)
 - Liyi Li (UMD)
 - Sarah Marshall (Microsoft)
 - Yuxiang Peng (UMD)
 - Robert Rand (U Chicago)
 - Kartik Singhal (U Chicago)
 - Finn Voichick (UMD)
 - Xiaodi Wu (UMD)