QIRs for Formal Verification

Kesha Hietala
University of Maryland, College Park

QCE21 Workshop on Quantum Intermediate Representations
October 22nd, 2021

17-22

October 2021

Virtual Event

About me

* 6th year PhD student at the University of Maryland,
College Park

- On the job market!

* Interested broadly in formal verification,
compilers, and static analysis

 For my PhD I’ve been applying formal verification
to the quantum software toolchain

e Spent last summer interning for Microsoft

remotely) thinking about how to apply formal
verification to Q#

This talk

Motivation

SQIR — a QIR designed for verification
VOQC — a verified compiler
|IRs for oracles

Concluding thoughts

Formal verification

 Formal verification is the process of proving that a program matches a
specification (e.qg., in a proof assistant)

- More expensive than testing, but provides stronger correctness
guarantees

 When should you use formal verification?
- Code has an impact on human well-being (avionics, crypto)
- Code is “trusted” (compilers, operating systems)
- Code is hard to test (compilers, quantum)
- Running incorrect code wastes significant resources (quantum)

Formal verification for quantum

 Quantum computing is an interesting application area for formal verification
- Simulation is expensive -
- Hardware is noisy hard to test!
- Can’t inspect (i.e., measure & print) intermediate state
- Not intuitive (entanglement may lead to unintended state updates)

- Formal verification provides the possibility for software assurance, without
having to run the software

* Increasingly popular topic in the academic community: Quantum Hoare Logic
(TOPLAS 2012), QWIRE (POPL 2017), Quantum Relational Hoare L ogic
(POPL 2019), VOQC (POPL 2021), SQIR (ITP 2021), QBRICKS (ESOP 2021)

S~ ¥ our work

5

https://dl.acm.org/doi/10.1145/2049706.2049708
https://dl.acm.org/doi/10.1145/3009837.3009894
https://dl.acm.org/doi/10.1145/3290346
https://dl.acm.org/doi/pdf/10.1145/3434318
https://drops.dagstuhl.de/opus/volltexte/2021/13916/
https://arxiv.org/abs/2003.05841

This talk

Motivation

SQIR — a QIR designed for verification
VOQC — a verified compiler

IRs for oracles

Concluding thoughts

SQIR

SQIR is a Simple Quantum Intermediate Representation for expressing

)
quantum circuits + libraries for reasoning about quantum programs in the |)
Coq Proof Assistant o

Presented as the intermediate representation of a verified compiler (a la
CompCert) at POPL 2021 (arxiv:1912.02250)

Presented as a source language for verified quantum programming at ITP
2021 (arxiv:2010.01240)

Code available at github.com/inQWIRE/SQIR

https://arxiv.org/pdf/1912.02250.pdf
https://arxiv.org/pdf/2010.01240.pdf
https://github.com/inQWIRE/SQIR

Unitary SQIR

 Semantics parameterized by gate set G and dimension d of a global register

U == U;; Uy | Gq|Gaqrqo E.g9. apply,(X,q,d) =
by & <(1) (1)> & Iri-g-1)
e The denotation (semantics) of Uis a 2¢ x 2¢ unitary matrix

\U1; Uslla= [Uzlax [U1i]aq q<d

Gy qlla = {applyl(Gl, g, d)” well-typed « /
094 otherwise G<d A <d A ta
apply2(G2, q1, g2, d) well-typed«
Q _
G2 1 g2la {02d otherwise

Non-unitary SQIR

 Semantics parameterized by gate set G and dimension d of a global register

P =

skip | P1; P> |U |meas q P; P;

» The denotation of P is a function over 2¢ x 2¢ density matrices

{{meas q P; P,

ta(p) = p
}d(,D) i ({IPZI}d ’ ﬂpll}d)(p) Standard semantics;
}d(P) = [[U]la x p x [[U]]Z also used in QHL

and QWIRE-Z

Fa(p) = {P2[ra(]0)4{0] x p x [0)4(0])
+ {P1fta(|1)g(1] x p x [1)4(1])

1Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.
9 2 Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.

SQIR metaprogramming

 SQIR programs just express circuits. We can express parameterized
circuit families using Coqg as a meta programming language

0 | H] Fixpoint ghz (n : N) : ucom base n :=
[0) NVan match n with

|10) D | 0 = SKIP

Z :] 1 = HO

O) o | Sn' = ghz n'; CNOT (n'-1) n'

0) D end.

 The ghz Coq function returns a SQIR program (of type ucom base n)
whose semantics is the n-qubit GHZ state

10

Proofs of correctness in CoqQ

* We might like to prove that evaluating ghz n on |0)®" produces |GHZ")
- where |GHZ") = —(|0)®" + | 1)®"
NG

Definition GHZ (n : N) : Vector (2 ~ n) :=
match n with

| O = I 1
| Sn' = :%§=k|0)®” +-j5§ * [1)®"
end.

Lemma ghz_correct : V n : N,

n >0 — [ghz n], x [0)®°" = GHZ n.
Proof.

Qed.

11

Proofs so far

* Jo date, we have formally verified:
- Quantum teleportation / superdense coding
- GHZ state preparation
- Deutsch-Jozsa algorithm
- Simon’s algorithm
- Grover’s search algorithm
- Quantum phase estimation (key part of Shor’s algorithm)

 These proofs as well as the basic support of SQIR (lemmas, tactics, etc.)
constitute about 3500 lines of Coqg code

12

Example: QPE

’ e

parameterized by U, k, n

* QFT;I;

] 2k:—1

 Quantum Phase Estimation: given a circuit implementing some unitary U and
a state |y) such that U|y) = e?™|y), find €

- The key “quantum” part of Shor’s factoring algorithm
- The most sophisticated quantum algorithm verified by any current tool

 The SQIR implementation is 40 lines and the proof is 1000 lines
- Proof completed in two person-weeks

13

Example: QPE

e Correctness property in the case where 6 can be represented using
exactly k bits (call this representation 2):

Lemma QPE_correct_simplified: V k n (u : ucom base n) z (¢ : Vector 2"),
n >0 —k >1 — uc_well _typed u - WF_Matrix ¥ —
let § := z / 2F in

[u], X ¥ = e*™ % ¢p —

[QPE k n ukin x (|0)° ® ¥) = |z) ® 9.

« Conclusion says that the running QPE on the input |00...0) ® |y)
produces z in the first k bits

14

Example: QPE

 |f 8 cannot be exactly expressed using k bits, we get an approximation

. . . 4
within of the true value with probabillity at least — ~ 0.41
Vk+1 72

o0 is the error in representing &

Lemma QPE_semantics_full : V k n (u : ucom base n) z (¢ : Vector 2") [(0 : R)|,
n >0 —k >1 — uc_well_typed u — Pure_State_Vector ¥ —

-1 /2 <5 <1 /2 55 £0 o

prob_partial_meas |z) ([QPE k n ulzyn X (|0)* ® ¥)) > 4 / =2.

15

This talk

Motivation

SQIR — a QIR designed for verification
VOQC — a verified compiler
|IRs for oracles

Concluding thoughts

16

VOQC: Verified Optimizer for Quantum Circuits

OpenQASM * SQIR circuit

Gate
decomposition
Optimization

f

Output uses gates
In the desired set
Circuits are
equivalent

Output satisfies
arch. constraints

Circuit mapping

OpenQASM ‘ SQIR circuit

17

Example: X propagation

Edy X Y -1
HuHzF =< aHzF - xHuHz}F — aHzHzF

« Based on Nam et al' “*not propagation”

* \We verify semantics-preservation

- At each step, the denotation of the program (i.e. unitary matrix) does not
change

* \We prove this via induction on the structure of the input program
- ~30 lines to implement optimization
- ~270 lines to prove semantics-preservation

TNam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.
18

A
\VV

More interesting: Rotation merging

T
> W NS Wray Wl Pt 7

 Based on Nam et al rotation merging

 Combines Rz gates in arbitrary {Rz, CNOT} sub-circuits
- ~100 lines to iImplement optimization
- ~920 lines to prove semantics-preservation

19

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html

https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
nttps://github.com/Quantomatic/pyzx

Evaluation

OO~r0WON—=

Compared our verified optimizer against existing unverified optimizers on
a benchmark by Amy et al.4

- IBM Qiskit Terra v0.15.12°

- Cambridge CQC tket v0.6.02

- Nam et al.,3 both L and H levels (used by lonQ)
- Amy et al.4

- PyZX v0.6.05

20

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx

Results

Geo. mean compilation times

https://qiskit.org/

https://cqcl.github.io/pytket/build/html/index.html

https://arxiv.org/pdf/1710.07345.pdf

https://arxiv.org/pdf/1303.2042.pdf

OO~r0WON—=

https://github.com/Quantomatic/pyzx

Qiskit’

tket?

Nam3 (L)

Nam (H)

Amy4

PyZX5

VOQC is the

voaQc same ballpark

0.812s

0.129s

0.002s

Geo. mean reduction in gate count

Qiskit

tket

Nam (H)

VOQC

10.1%

10.6%

24.8%

17.8%

VOQC only outperformed by Nam

0.018s

21

0.007/s

0.384s

0.013s

Geo mean. reduction in T gate count

Amy

PyZX

VOQC

Nam (H)

42.6%

41.4% 41.4%

VOQC only outperformed by PyZX

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx

This talk

Motivation

SQIR — a QIR designed for verification
VOQC — a verified compiler
IRs for oracles

Concluding thoughts

22

Motivation: Verifying oracles

e Many quantum programs rely on oracles, classical functions evaluated on
quantum data

- E.qg., Deutsch-Jozsa algorithm, Shor’s factoring algorithm

 Rather than verifying the oracle circuit directly, it’s easier to verify the
oracle in a special-purpose IR first and then used a verified compiller

bo) ¢ ? bo)
b) ® ® by)
D,) ® b,)
(by N b)) @ b, I:> 0) D D— |y A b) & b,)
0) —D . D 0)
0) O——D 0)

23

RCIR: Reversible Circuit IR

 \We developed RCIR, a language for describing Boolean functions with a
proved-correct compiler to SQIR

R := skip | Xn | ctrlnR | swapmn | Ri; R,

 \We use RCIR to define the modular multiplication oracle in our full
implementation of Shor’s algorithm

- Project lead by Yuxiang Peng (UMD), draft in preparation

24

PQASM: “phase-space” QASM

 We are also working on a new IR that allows some non-classical operations
(e.g., Hadamard transform, QFT) while still being efficiently simulatable

Position p == (x,n) Nat. Num n m i Variable x
Instruction ¢ == IDp|Xp|RZnp|RZInp|SRnx
SR Inx|CNOT pp|t;t|QFT x| QFT ! x

Hx|CUpi|Lshift x| Rshift x | Rev x

* \We prove properties about PQASM programs first, and then use a verified
compiler from PQASM to SQIR

- Project lead by Liyi Li (UMD), draft available upon request

25

This talk

Motivation

SQIR — a QIR designed for verification
VOQC — a verified compiler
|IRs for oracles

Concluding thoughts

20

Lessons learned

 Formal verification requires a well-defined semantics so it is naturally
easier to verify small, domain-specific (sub-)languages like SQIR, RCIR,
and PQASM

- Restricts language features & interoperability with other compilers
- Larger languages may be ok with comprehensive documentation

* A matrix-based semantics requires a mapping from program “variables” to
matrix/vector indices. This requires forsaking variables (SQIR) or reasoning
about the allocation of variables to indices (PQASM)

- Restricts IR design
- An indication that matrices are not the right approach?

27

Moving forward

* |n order to scale up to industry-grade IRs like QIR, we may be able to
reuse existing verified IR frameworks

- E.qg., the Vellvm project out of UPenn provides a semantics for LLVM

e Alternatively, we might choose to verify properties simpler than full
semantic correctness. E.g.,

- Qubits are used linearly
- Qubits are unentangled when they are discarded

 During my internship with Microsoft, we wrote a plugin for the Q# compiler
to automatically check some of these simpler properties

28

https://www.cis.upenn.edu/~stevez/vellvm/

Get involved

o de i 1able online: * Collaborators:
ur code is available online: _ Mike Hicks (UMD)

github.com/inQWIRE/SQIR | |
. - Shih-Han Hung (UT Austin)
- Pull requests & issues welcome!

- Liyi Li (UMD)
e |ITP 2021 paper on verifying SQIR - Sarah Marshall (Microsoft)
programs: arxiv:2010.01240 - Yuxiang Peng (UMD)
- - Robert Rand (U Chicago)
« POPL 2021 .paper on optimizing SQIR - Kartik Slnghal (U Chicago)
programs with VOQC: - Finn Voichick (UMD)

arxiv:1912.02250

- Xiaodi Wu (UMD)

29

https://github.com/inQWIRE/SQIR
https://arxiv.org/pdf/2010.01240.pdf
https://arxiv.org/pdf/1912.02250.pdf

