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About me
• 6th year PhD student at the University of Maryland, 

College Park

- On the job market!


• Interested broadly in formal verification, 
compilers, and static analysis


• For my PhD I’ve been applying formal verification 
to the quantum software toolchain


• Spent last summer interning for Microsoft 
(remotely) thinking about how to apply formal 
verification to Q#
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Formal verification
• Formal verification is the process of proving that a program matches a 

specification (e.g., in a proof assistant)

- More expensive than testing, but provides stronger correctness 

guarantees

• When should you use formal verification?

- Code has an impact on human well-being (avionics, crypto)


- Code is “trusted” (compilers, operating systems)


- Code is hard to test (compilers, quantum)


- Running incorrect code wastes significant resources (quantum)
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Formal verification for quantum
• Quantum computing is an interesting application area for formal verification


- Simulation is expensive


- Hardware is noisy


- Can’t inspect (i.e., measure & print) intermediate state


- Not intuitive (entanglement may lead to unintended state updates)


- Formal verification provides the possibility for software assurance, without 
having to run the software

• Increasingly popular topic in the academic community: Quantum Hoare Logic 
(TOPLAS 2012), QWIRE (POPL 2017), Quantum Relational Hoare Logic 
(POPL 2019), VOQC (POPL 2021), SQIR (ITP 2021), QBRICKS (ESOP 2021) 
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our work

hard to test!

https://dl.acm.org/doi/10.1145/2049706.2049708
https://dl.acm.org/doi/10.1145/3009837.3009894
https://dl.acm.org/doi/10.1145/3290346
https://dl.acm.org/doi/pdf/10.1145/3434318
https://drops.dagstuhl.de/opus/volltexte/2021/13916/
https://arxiv.org/abs/2003.05841
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SQIR
• SQIR is a Simple Quantum Intermediate Representation for expressing 

quantum circuits + libraries for reasoning about quantum programs in the 
Coq Proof Assistant

• Presented as the intermediate representation of a verified compiler (à la 
CompCert) at POPL 2021 (arxiv:1912.02250)

• Presented as a source language for verified quantum programming at ITP 
2021 (arxiv:2010.01240)

• Code available at github.com/inQWIRE/SQIR
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https://arxiv.org/pdf/1912.02250.pdf
https://arxiv.org/pdf/2010.01240.pdf
https://github.com/inQWIRE/SQIR


Unitary SQIR
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E.g.  

           

apply1(X, q, d) =
I2q ⊗ ⊗ I2(d−q−1)

q1 < d ∧ q2 < d ∧ q1 ≠ q2

q < d

(0 1
1 0)

• Semantics parameterized by gate set G and dimension d of a global register

• The denotation (semantics) of U is a    unitary matrix2d × 2d



• Semantics parameterized by gate set G and dimension d of a global register

• The denotation of P is a function over    density matrices2d × 2d

Non-unitary SQIR
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Standard semantics; 
also used in QHL1 

and QWIRE2 

1 Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.

2 Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.



SQIR metaprogramming
• SQIR programs just express circuits. We can express parameterized 

circuit families using Coq as a meta programming language


• The ghz Coq function returns a SQIR program (of type ucom base n) 
whose semantics is the n-qubit GHZ state
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Proofs of correctness in Coq
• We might like to prove that evaluating  ghz n on   produces 


- where
|0⟩⊗n |GHZn⟩
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...

|GHZn⟩ = 1
2

( |0⟩⊗n + |1⟩⊗n)



Proofs so far
• To date, we have formally verified:


- Quantum teleportation / superdense coding

- GHZ state preparation

- Deutsch-Jozsa algorithm

- Simon’s algorithm

- Grover’s search algorithm

- Quantum phase estimation (key part of Shor’s algorithm)


• These proofs as well as the basic support of SQIR (lemmas, tactics, etc.) 
constitute about 3500 lines of Coq code
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Example: QPE

• Quantum Phase Estimation: given a circuit implementing some unitary  and 
a state  such that , find  

- The key “quantum” part of Shor’s factoring algorithm

- The most sophisticated quantum algorithm verified by any current tool


• The SQIR implementation is 40 lines and the proof is 1000 lines 

- Proof completed in two person-weeks

U
|ψ⟩ U |ψ⟩ = e2πiθ |ψ⟩ θ
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parameterized by U, k, n



Example: QPE
• Correctness property in the case where  can be represented using 

exactly k bits (call this representation z):
θ

• Conclusion says that the running QPE on the input  
produces z in the first k bits

|00...0⟩ ⊗ |ψ⟩
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Example: QPE
• If  cannot be exactly expressed using k bits, we get an approximation 

within  of the true value with probability at least 
θ

1
2k+1

4
π2 ≈ 0.41
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 is the error in representing δ θ
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VOQC: Verified Optimizer for Quantum Circuits
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Circuits are 
equivalent

Output satisfies 
arch. constraints

Output uses gates 
in the desired set

OpenQASM

OpenQASM

SQIR circuit

SQIR circuit

Gate 
decomposition

Optimization

Circuit mapping



Example: X propagation

• Based on Nam et al1 “not propagation”


• We verify semantics-preservation

- At each step, the denotation of the program (i.e. unitary matrix) does not 

change


• We prove this via induction on the structure of the input program

- ~30 lines to implement optimization

- ~270 lines to prove semantics-preservation
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X X
ZH

X X
ZHX ZZH HZHX

1Nam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.
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H

H

H

Rz(y)

Rz(z)

H

Rz(w) H

H

More interesting: Rotation merging
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• Based on Nam et al rotation merging


• Combines Rz gates in arbitrary {Rz, CNOT} sub-circuits

- ~100 lines to implement optimization

- ~920 lines to prove semantics-preservation

Rz(w)Rz(x+w)



Evaluation

• Compared our verified optimizer against existing unverified optimizers on 
a benchmark by Amy et al.4

- IBM Qiskit Terra v0.15.121

- Cambridge CQC tket v0.6.02

- Nam et al.,3 both L and H levels (used by IonQ)

- Amy et al.4

- PyZX v0.6.05
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1 https://qiskit.org/

2 https://cqcl.github.io/pytket/build/html/index.html

3 https://arxiv.org/pdf/1710.07345.pdf

4 https://arxiv.org/pdf/1303.2042.pdf

5 https://github.com/Quantomatic/pyzx

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx


Results

Geo. mean reduction in gate count

Qiskit tket Nam (H) VOQC

10.1% 10.6% 24.8% 17.8%

Geo mean. reduction in T gate count

Amy PyZX Nam (H) VOQC

39.7% 42.6% 41.4% 41.4%

1 https://qiskit.org/

2 https://cqcl.github.io/pytket/build/html/index.html

3 https://arxiv.org/pdf/1710.07345.pdf

4 https://arxiv.org/pdf/1303.2042.pdf

5 https://github.com/Quantomatic/pyzx

Geo. mean compilation times

Qiskit1 tket2 Nam3 (L) Nam (H) Amy4 PyZX5 VOQC

0.812s 0.129s 0.002s 0.018s 0.007s 0.384s 0.013s
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VOQC is the 
same ballpark

VOQC only outperformed by Nam VOQC only outperformed by PyZX

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx
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Motivation: Verifying oracles
• Many quantum programs rely on oracles, classical functions evaluated on 

quantum data

- E.g., Deutsch-Jozsa algorithm, Shor’s factoring algorithm

• Rather than verifying the oracle circuit directly, it’s easier to verify the 
oracle in a special-purpose IR first and then used a verified compiler
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(b0 ∧ b1) ⊕ b2

|b0⟩
|b1⟩
|b2⟩
|0⟩
|0⟩
|0⟩

|b0⟩
|b1⟩
|b2⟩
| (b0 ∧ b1) ⊕ b2 ⟩
|0⟩
|0⟩



RCIR: Reversible Circuit IR

• We developed RCIR, a language for describing Boolean functions with a 
proved-correct compiler to SQIR

• We use RCIR to define the modular multiplication oracle in our full 
implementation of Shor’s algorithm 

- Project lead by Yuxiang Peng (UMD), draft in preparation
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PQASM: “phase-space” QASM
• We are also working on a new IR that allows some non-classical operations 

(e.g., Hadamard transform, QFT) while still being efficiently simulatable

• We prove properties about PQASM programs first, and then use a verified 
compiler from PQASM to SQIR

- Project lead by Liyi Li (UMD), draft available upon request
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Lessons learned
• Formal verification requires a well-defined semantics so it is naturally 

easier to verify small, domain-specific (sub-)languages like SQIR, RCIR, 
and PQASM

- Restricts language features & interoperability with other compilers

- Larger languages may be ok with comprehensive documentation


• A matrix-based semantics requires a mapping from program “variables” to 
matrix/vector indices. This requires forsaking variables (SQIR) or reasoning 
about the allocation of variables to indices (PQASM)

- Restricts IR design

- An indication that matrices are not the right approach?
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Moving forward
• In order to scale up to industry-grade IRs like QIR, we may be able to 

reuse existing verified IR frameworks

- E.g., the Vellvm project out of UPenn provides a semantics for LLVM


• Alternatively, we might choose to verify properties simpler than full 
semantic correctness. E.g.,

- Qubits are used linearly

- Qubits are unentangled when they are discarded


• During my internship with Microsoft, we wrote a plugin for the Q# compiler 
to automatically check some of these simpler properties
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https://www.cis.upenn.edu/~stevez/vellvm/


Get involved
• Our code is available online: 

github.com/inQWIRE/SQIR

- Pull requests & issues welcome!


• ITP 2021 paper on verifying SQIR 
programs: arxiv:2010.01240


• POPL 2021 paper on optimizing SQIR 
programs with VOQC: 
arxiv:1912.02250  


• Collaborators:

- Mike Hicks (UMD)

- Shih-Han Hung (UT Austin)

- Liyi Li (UMD)

- Sarah Marshall (Microsoft)

- Yuxiang Peng (UMD)

- Robert Rand (U Chicago)

- Kartik Singhal (U Chicago)

- Finn Voichick (UMD)

- Xiaodi Wu (UMD)
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https://github.com/inQWIRE/SQIR
https://arxiv.org/pdf/2010.01240.pdf
https://arxiv.org/pdf/1912.02250.pdf

