
 QIRs for Formal Verification
Kesha Hietala

University of Maryland, College Park

QCE21 Workshop on Quantum Intermediate Representations
October 22nd, 2021

1

About me
• 6th year PhD student at the University of Maryland,

College Park

- On the job market!

• Interested broadly in formal verification,
compilers, and static analysis

• For my PhD I’ve been applying formal verification
to the quantum software toolchain

• Spent last summer interning for Microsoft
(remotely) thinking about how to apply formal
verification to Q#

2

This talk

Motivation

SQIR — a QIR designed for verification

VOQC — a verified compiler

IRs for oracles

Concluding thoughts

3

Formal verification
• Formal verification is the process of proving that a program matches a

specification (e.g., in a proof assistant)

- More expensive than testing, but provides stronger correctness

guarantees

• When should you use formal verification?

- Code has an impact on human well-being (avionics, crypto)

- Code is “trusted” (compilers, operating systems)

- Code is hard to test (compilers, quantum)

- Running incorrect code wastes significant resources (quantum)

4

Formal verification for quantum
• Quantum computing is an interesting application area for formal verification

- Simulation is expensive

- Hardware is noisy

- Can’t inspect (i.e., measure & print) intermediate state

- Not intuitive (entanglement may lead to unintended state updates)

- Formal verification provides the possibility for software assurance, without
having to run the software

• Increasingly popular topic in the academic community: Quantum Hoare Logic
(TOPLAS 2012), QWIRE (POPL 2017), Quantum Relational Hoare Logic
(POPL 2019), VOQC (POPL 2021), SQIR (ITP 2021), QBRICKS (ESOP 2021)

5

our work

hard to test!

https://dl.acm.org/doi/10.1145/2049706.2049708
https://dl.acm.org/doi/10.1145/3009837.3009894
https://dl.acm.org/doi/10.1145/3290346
https://dl.acm.org/doi/pdf/10.1145/3434318
https://drops.dagstuhl.de/opus/volltexte/2021/13916/
https://arxiv.org/abs/2003.05841

This talk

Motivation

SQIR — a QIR designed for verification

VOQC — a verified compiler

IRs for oracles

Concluding thoughts

6

SQIR
• SQIR is a Simple Quantum Intermediate Representation for expressing

quantum circuits + libraries for reasoning about quantum programs in the
Coq Proof Assistant

• Presented as the intermediate representation of a verified compiler (à la
CompCert) at POPL 2021 (arxiv:1912.02250)

• Presented as a source language for verified quantum programming at ITP
2021 (arxiv:2010.01240)

• Code available at github.com/inQWIRE/SQIR

7

https://arxiv.org/pdf/1912.02250.pdf
https://arxiv.org/pdf/2010.01240.pdf
https://github.com/inQWIRE/SQIR

Unitary SQIR

8

E.g.

apply1(X, q, d) =
I2q ⊗ ⊗ I2(d−q−1)

q1 < d ∧ q2 < d ∧ q1 ≠ q2

q < d

(0 1
1 0)

• Semantics parameterized by gate set G and dimension d of a global register

• The denotation (semantics) of U is a unitary matrix2d × 2d

• Semantics parameterized by gate set G and dimension d of a global register

• The denotation of P is a function over density matrices2d × 2d

Non-unitary SQIR

9

Standard semantics;
also used in QHL1

and QWIRE2

1 Ying. Floyd-Hoare logic for quantum programs. TOPLAS 2012.

2 Paykin et al. QWIRE: A core language for quantum circuits. POPL 2017.

SQIR metaprogramming
• SQIR programs just express circuits. We can express parameterized

circuit families using Coq as a meta programming language

• The ghz Coq function returns a SQIR program (of type ucom base n)
whose semantics is the n-qubit GHZ state

10

|0⟩ H
. .

.
|0⟩
|0⟩

|0⟩
|0⟩

. .
.

Proofs of correctness in Coq
• We might like to prove that evaluating ghz n on produces

- where
|0⟩⊗n |GHZn⟩

11

...

|GHZn⟩ = 1
2

(|0⟩⊗n + |1⟩⊗n)

Proofs so far
• To date, we have formally verified:

- Quantum teleportation / superdense coding

- GHZ state preparation

- Deutsch-Jozsa algorithm

- Simon’s algorithm

- Grover’s search algorithm

- Quantum phase estimation (key part of Shor’s algorithm)

• These proofs as well as the basic support of SQIR (lemmas, tactics, etc.)
constitute about 3500 lines of Coq code

12

Example: QPE

• Quantum Phase Estimation: given a circuit implementing some unitary and
a state such that , find

- The key “quantum” part of Shor’s factoring algorithm

- The most sophisticated quantum algorithm verified by any current tool

• The SQIR implementation is 40 lines and the proof is 1000 lines

- Proof completed in two person-weeks

U
|ψ⟩ U |ψ⟩ = e2πiθ |ψ⟩ θ

13

parameterized by U, k, n

Example: QPE
• Correctness property in the case where can be represented using

exactly k bits (call this representation z):
θ

• Conclusion says that the running QPE on the input
produces z in the first k bits

|00...0⟩ ⊗ |ψ⟩

14

Example: QPE
• If cannot be exactly expressed using k bits, we get an approximation

within of the true value with probability at least
θ

1
2k+1

4
π2 ≈ 0.41

15

 is the error in representing δ θ

This talk

Motivation

SQIR — a QIR designed for verification

VOQC — a verified compiler

IRs for oracles

Concluding thoughts

16

VOQC: Verified Optimizer for Quantum Circuits

17

Circuits are
equivalent

Output satisfies
arch. constraints

Output uses gates
in the desired set

OpenQASM

OpenQASM

SQIR circuit

SQIR circuit

Gate
decomposition

Optimization

Circuit mapping

Example: X propagation

• Based on Nam et al1 “not propagation”

• We verify semantics-preservation

- At each step, the denotation of the program (i.e. unitary matrix) does not

change

• We prove this via induction on the structure of the input program

- ~30 lines to implement optimization

- ~270 lines to prove semantics-preservation

18

X X
ZH

X X
ZHX ZZH HZHX

1Nam, Ross, Su, Childs and Maslov. Automated Optimization of Large Quantum Circuits with Continuous Parameters. npj 2018.

X

H

H

H

Rz(y)

Rz(z)

H

Rz(w) H

H

More interesting: Rotation merging

19

• Based on Nam et al rotation merging

• Combines Rz gates in arbitrary {Rz, CNOT} sub-circuits

- ~100 lines to implement optimization

- ~920 lines to prove semantics-preservation

Rz(w)Rz(x+w)

Evaluation

• Compared our verified optimizer against existing unverified optimizers on
a benchmark by Amy et al.4

- IBM Qiskit Terra v0.15.121

- Cambridge CQC tket v0.6.02

- Nam et al.,3 both L and H levels (used by IonQ)

- Amy et al.4

- PyZX v0.6.05

20

1 https://qiskit.org/

2 https://cqcl.github.io/pytket/build/html/index.html

3 https://arxiv.org/pdf/1710.07345.pdf

4 https://arxiv.org/pdf/1303.2042.pdf

5 https://github.com/Quantomatic/pyzx

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx

Results

Geo. mean reduction in gate count

Qiskit tket Nam (H) VOQC

10.1% 10.6% 24.8% 17.8%

Geo mean. reduction in T gate count

Amy PyZX Nam (H) VOQC

39.7% 42.6% 41.4% 41.4%

1 https://qiskit.org/

2 https://cqcl.github.io/pytket/build/html/index.html

3 https://arxiv.org/pdf/1710.07345.pdf

4 https://arxiv.org/pdf/1303.2042.pdf

5 https://github.com/Quantomatic/pyzx

Geo. mean compilation times

Qiskit1 tket2 Nam3 (L) Nam (H) Amy4 PyZX5 VOQC

0.812s 0.129s 0.002s 0.018s 0.007s 0.384s 0.013s

21

VOQC is the
same ballpark

VOQC only outperformed by Nam VOQC only outperformed by PyZX

https://qiskit.org/
https://cqcl.github.io/pytket/build/html/index.html
https://arxiv.org/pdf/1710.07345.pdf
https://arxiv.org/pdf/1303.2042.pdf
https://github.com/Quantomatic/pyzx

This talk

Motivation

SQIR — a QIR designed for verification

VOQC — a verified compiler

IRs for oracles

Concluding thoughts

22

Motivation: Verifying oracles
• Many quantum programs rely on oracles, classical functions evaluated on

quantum data

- E.g., Deutsch-Jozsa algorithm, Shor’s factoring algorithm

• Rather than verifying the oracle circuit directly, it’s easier to verify the
oracle in a special-purpose IR first and then used a verified compiler

23

(b0 ∧ b1) ⊕ b2

|b0⟩
|b1⟩
|b2⟩
|0⟩
|0⟩
|0⟩

|b0⟩
|b1⟩
|b2⟩
| (b0 ∧ b1) ⊕ b2 ⟩
|0⟩
|0⟩

RCIR: Reversible Circuit IR

• We developed RCIR, a language for describing Boolean functions with a
proved-correct compiler to SQIR

• We use RCIR to define the modular multiplication oracle in our full
implementation of Shor’s algorithm

- Project lead by Yuxiang Peng (UMD), draft in preparation

24

PQASM: “phase-space” QASM
• We are also working on a new IR that allows some non-classical operations

(e.g., Hadamard transform, QFT) while still being efficiently simulatable

• We prove properties about PQASM programs first, and then use a verified
compiler from PQASM to SQIR

- Project lead by Liyi Li (UMD), draft available upon request

25

This talk

Motivation

SQIR — a QIR designed for verification

VOQC — a verified compiler

IRs for oracles

Concluding thoughts

26

Lessons learned
• Formal verification requires a well-defined semantics so it is naturally

easier to verify small, domain-specific (sub-)languages like SQIR, RCIR,
and PQASM

- Restricts language features & interoperability with other compilers

- Larger languages may be ok with comprehensive documentation

• A matrix-based semantics requires a mapping from program “variables” to
matrix/vector indices. This requires forsaking variables (SQIR) or reasoning
about the allocation of variables to indices (PQASM)

- Restricts IR design

- An indication that matrices are not the right approach?

27

Moving forward
• In order to scale up to industry-grade IRs like QIR, we may be able to

reuse existing verified IR frameworks

- E.g., the Vellvm project out of UPenn provides a semantics for LLVM

• Alternatively, we might choose to verify properties simpler than full
semantic correctness. E.g.,

- Qubits are used linearly

- Qubits are unentangled when they are discarded

• During my internship with Microsoft, we wrote a plugin for the Q# compiler
to automatically check some of these simpler properties

28

https://www.cis.upenn.edu/~stevez/vellvm/

Get involved
• Our code is available online:

github.com/inQWIRE/SQIR

- Pull requests & issues welcome!

• ITP 2021 paper on verifying SQIR
programs: arxiv:2010.01240

• POPL 2021 paper on optimizing SQIR
programs with VOQC:
arxiv:1912.02250

• Collaborators:

- Mike Hicks (UMD)

- Shih-Han Hung (UT Austin)

- Liyi Li (UMD)

- Sarah Marshall (Microsoft)

- Yuxiang Peng (UMD)

- Robert Rand (U Chicago)

- Kartik Singhal (U Chicago)

- Finn Voichick (UMD)

- Xiaodi Wu (UMD)

29

https://github.com/inQWIRE/SQIR
https://arxiv.org/pdf/2010.01240.pdf
https://arxiv.org/pdf/1912.02250.pdf

