
Kesha Hietala, May 16 2022

A Verified Software Toolchain
for Quantum Programming
Dissertation Defense

1

Techniques for classical program verification can be
adapted to the quantum setting, allowing for the

development of high-assurance quantum software,
without sacrificing performance or programmability.

2

Acknowledgements
• Content based on:

• Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, Michael Hicks. A
Verified Optimizer for Quantum Circuits. POPL 2021.

• Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, Michael Hicks. Proving
Quantum Programs Correct. ITP 2021.

• Liyi Li, Finn Voichick, Kesha Hietala, Yuxiang Peng, Xiaodi Wu, Michael Hicks.
Verified Compilation of Quantum Oracles. Draft.

• Yuxiang Peng, Kesha Hietala, Runzhou Tao, Liyi Li, Robert Rand, Michael
Hicks, Xiaodi Wu. A Formally Certified End-to-End Implementation of Shor's
Factorization Algorithm. Draft.

• Ongoing work with Sarah Marshall, Robert Rand, Kartik Singhal, Nik Swamy

3

Acknowledgements

4

Mike Hicks Shih-Han Hung Robert RandLiyi Li Sarah Marshall Yuxiang Peng

Kartik Singhal Nik Swamy Runzhou Tao Finn Voichick Xioadi Wu

Outline

Overview
Background

SQIR: A Small Quantum Language Supporting Verification

VOQC: A Verified Optimizer for Quantum Circuits

Q*: Formal Verification for a High-level Quantum Language

Summary

5

Software ToolchainVerified Software Toolchain
Algorithm description

High-level language

High-level intermediate representation (IR)

Low-level IR

Machine-compliant IR

Machine-executable instructions
6

Q* (Ch 5), OQIMP (Ch 4.5)

SQIR (Ch 3)

OQASM (Ch 4.5)

VQO (Ch. 4.5)

VQO (Ch 4.5)

VOQC (Ch 4)

= preserves semantics

This talk

Open Source Implementations
• SQIR/VOQC Coq impl. and proofs: github.com/inQWIRE/SQIR

• VOQC OCaml library: github.com/inQWIRE/mlvoqc

• VOQC Python bindings and tutorial: github.com/inQWIRE/pyvoqc

• VQO Coq impl. and proofs: github.com/inQWIRE/VQO

7

https://github.com/inQWIRE/SQIR
https://github.com/inQWIRE/mlvoqc
https://github.com/inQWIRE/pyvoqc
https://github.com/inQWIRE/VQO

Outline

Overview

Background
SQIR: A Small Quantum Language Supporting Verification

VOQC: A Verified Optimizer for Quantum Circuits

Q*: Formal Verification for a High-level Quantum Language

Summary

8

Quantum Programming

• Quantum programs are often described using circuits

• “High-level” quantum programming languages are often libraries for
constructing circuits

Circuit QASM PyQuil

9

Quantum Program Semantics
• States are interpreted as vectors/matrices; applying an operation is

left-multiplication by a matrix

• Example: show that the program on the previous slide produces the
state 1/ 2(|000⟩ + |111⟩)

1/ 2(|0⟩ + |1⟩) |00⟩ = 1/ 2(|000⟩ + |100⟩)|000⟩ H 0

CNOT 0 1

CNOT 1 2

1/ 2(|000⟩ + |110⟩)

1/ 2(|000⟩ + |111⟩)

H = 1
2 (1 1

1 −1)|0⟩ = (1
0) H |0⟩ = 1

2 (1
1) = 1

2
(|0⟩ + |1⟩)|00⟩ = (1

0) ⊗ (1
0)

10

n qubits = -length vector2n

Verified Quantum Programming
• Formal verification is the process of proving that a program matches

its specification

• Why should we formally verify quantum programs?

11

- Current quantum machines are noisy and resource-limited
- “printf() debugging” affects the state
- Unit testing is expensive — programs output a distribution of results

- Requires resources exponential in the number of qubits

Stronger guarantees than testing — specifications hold over all inputs

• Can’t debug on a quantum machine

• Can’t debug (simulate) on a classical machine

Related Work
• Will existing classical verification technology “just work”?

• Is existing work on quantum formal verification sufficient?
No, quantum programs have a very different semantics

Used to verify the
software toolchain

Contains state-of-the-
art optimizations

Applied to interesting
quantum programs

General semantics for
quantum programs

SQIR & VOQCQuantum logics
(QHL, qRHL) QBRICKS ReVerCQWIRE Giallar

CAV 2017 PLDI 2022POPL 2017CAV 2019, POPL 2019 ESOP 2021 POPL & ITP 2021

Outline

Overview

Background

SQIR: A Small Quantum Language Supporting Verification
VOQC: A Verified Optimizer for Quantum Circuits

Q*: Formal Verification for a High-level Quantum Language

Summary

13

SQIR
• A Small Quantum Intermediate Representation

• Semantics are matrices, parameterized by number of qubits

14

Codeveloped with Robert Rand

= (I ⊗ CNOT) × (CNOT ⊗ I) × (H ⊗ I ⊗ I)H 0; CNOT 0 1; CNOT 1 2 3

Three qubits,

 matrix23 × 23

Denotation function

SQIR program matrix expression

unitary core

full language

Example: GHZ State Preparation
• The n-qubit GHZ state, , is constructed by

the following program

• We prove that evaluating ghz(n) on produces |0⟩⊗n |GHZn⟩

|GHZn⟩ = 1
2

(|0⟩⊗n + |1⟩⊗n)

|0⟩ H

. .
.

|0⟩
|0⟩

|0⟩
|0⟩

. .
.

15

Proof “on paper”
• Base: Evaluating ghz(1) = H 0 on produces |0⟩ |GHZ1⟩ = 1/ 2(|0⟩ + |1⟩)

• Induction: Assume the property holds for , i.e., evaluating
ghz(k) on produces . Prove that the
property holds for .

• Recall: ghz(k+1) = ghz(k); CNOT (k-1) k

k ≥ 1
|0⟩⊗k |GHZk⟩ = 1/ 2(|0⟩⊗k + |1⟩⊗k)

k + 1

ghz(k)
|0⟩⊗ k+1

|0⟩⊗ k |0⟩
|GHZk⟩ |0⟩

1/ 2(|0⟩⊗k + |1⟩⊗k) |0⟩

1/ 2(|0⟩⊗k |0⟩ + |1⟩⊗k |0⟩)

1/ 2(|0⟩⊗k |0⟩ + |1⟩⊗k |1⟩)
|GHZk+1⟩

CNOT (k-1) k

16

Proof in Coq
• We write a correctness specification in Coq, and use tactics (e.g.

“induction”) to construct a proof

• Coq checks that our proof is valid!

17

...

Design Highlights
• SQIR was conceived as a simplified version of QWIRE; we build on

QWIRE’s libraries for matrices and complex numbers

• We made several changes to simplify proof:

• We reference qubits using concrete indices instead of variables

• We separate the unitary core from the full language w/ measurement

See Ch 3.2 of my dissertation

18

CNOT (n - 1) n is easier to translate to a matrix than CNOT x y

Unitary matrices are simpler than functions over density matrices

Verified Quantum Algorithms
• Quantum teleportation

• Superdense coding

• GHZ state preparation

• Deutsch-Jozsa algorithm

• Simon’s algorithm

• Quantum Fourier transform (QFT)

• Quantum phase estimation (QPE)

• Grover’s algorithm

• Shor’s factorization algorithm

•

19

Discussed in Ch 3.3 of my dissertation

Shih-Han Hung

Robert Rand

Liyi Li

Yuxiang Peng

Shih-Han Hung

Shor’s Algorithm
• A probabilistic, hybrid quantum/classical algorithm for factoring numbers

• We prove:

1. If the algorithm succeeds, it returns a factor

2. Each iteration succeeds with probability at least

3. Each iteration uses quantum gates

O((log N)−4)
O((log N)3)

20

Project led by Yuxiang Peng

repeat

Input N Randomly pick a < N Find order of a mod N PostprocessCheck if a, N coprime

fail? return factor?
fail?

return factor?

Running Shor’s Algorithm
• We extract our Coq definitions to OCaml code that generates SQIR circuits,

which we then translate to OpenQASM 2.0

• For Shor’s, we also extract classical pre- and postprocessing to OCaml

• We replace execution on a quantum machine with a call to a classical simulator

• Factoring 15 requires 35 qubits and ~22k gates

• We’ve simulated factoring inputs up to 8 bits (< 256)

21

Outline

Overview

Background

SQIR: A Small Quantum Language Supporting Verification

VOQC: A Verified Optimizer for Quantum Circuits
Q*: Formal Verification for a High-level Quantum Language

Summary

22

VOQC

• A Verified Optimizer for Quantum Circuits

• We prove that transformations are semantics-preserving, i.e., they do
not change the behavior of the program

23

equivalent

SQIR program

Optimized SQIR
program

VOQC

VOQC Toolchain

24

Python
interface

OpenQASM

source
circuit

target
circuit

Coq

SQIR
program
+ spec

VOQC
code +
spec

inp
ut

output

output

OCaml

SQIR
program

VOQC
library

extracts to

Developer User

Example: Not Propagation

• At each step, the denotation of the program (i.e. unitary matrix) does
not change

• We prove this via induction on the structure of the input program

• ~30 lines to implement optimization

• ~270 lines to prove soundness

X X
ZH

X X
ZHX ZZH HZHX

25

• VOQC supports 4 gates sets and 8 transformations

Summary of VOQC Features

26

From Nam et al. Automated optimization of large
quantum circuits with continuous parameters. npj

Quantum Information.
From IBM’s Qiskit compiler

Comparison w/ Other Optimizers

27

qiskit.org

Sivarajah et al. tket: A retargetable
compiler for NISQ devices.
Quantum Science & Technology.

Amy and Gheorghiu. staq — A full-
stack quantum processing tool.
Quantum Science & Technology.

Kissinger and van de Wetering.
PyZX: Large scale automated
diagrammatic reasoning. EPTCS.

= implemented in VOQC

= VOQC contains a

 similar optimization

https://qiskit.org/

Performance

28

(ii) Gate count reduction for RzQ gate set(i) Gate count reduction for IBM gate set

(iii) Running times

VOQC optimizes circuits better than existing optimizers, with
comparable running time, and is also verified.

Circuit Mapping
• Given an input program & description of machine connectivity, mapping

produces a program that meets connectivity constraints

E.g., how can we run the program on the left on the machine on the right?

29

4-qubit program

qubit

connection

4-qubit machine

Circuit Mapping

30

trivial layout

greedy layout

0

1

2

3

• Given an input program & description of machine connectivity, mapping
produces a program that meets connectivity constraints

E.g., how can we run the program on the left on the machine on the right?

Verified Circuit Mapping
• For mapping, we prove that the output program is equivalent to the

original, up to a permutation of qubits

• To support more complex algorithms, we provide translation validation

• We prove that if our translation validation succeeds, then the two
programs are mathematically equivalent

31

translation validation = equivalence check

compilerinput output

Outline

Overview

Background

SQIR: A Small Quantum Language Supporting Verification

VOQC: A Verified Optimizer for Quantum Circuits

Q*: Formal Verification for a High-level Quantum Language
Summary

32

Q# Programming Language
• A recent high-level quantum programming language from Microsoft

docs.microsoft.com/en-us/azure/quantum/user-guide/

• Looks like a classical imperative programming language, but has
some quantum-specific features

33

operation PrepareGhz (qs : Qubit[]) : Unit {
 H (qs[0]);
 ApplyCNOTChain(qs);
}

https://docs.microsoft.com/en-us/azure/quantum/user-guide/

Incorrect Q# Programs, Allowed by Compiler

34

operation InitQubit () : Qubit {
 use q = Qubit();
 return q;
}

operation ApplyX() : Unit {
 let q = InitQubit ();
 X(q);
}

(ii) Reuses a discarded qubit

deallocates at the end of scope

allocates a
fresh qubit(i) Violates no-cloning

use q = Qubit();
CNOT(q, q);

(iii) Discards an entangled qubit

operation PrepareBell (q1 : Qubit)
 : Unit {
 use q2 = Qubit();
 H(q1);
 CNOT(q1, q2);
}

Q# + F* = Q*

35

Q#

QIR SQIR executable
codeQ*

VOQC

translate
to

proof succeeds,
compile source

proof fails,
refine source

F*: A proof-oriented programming
language from Microsoft Research

Prototype Implementation
• We wrote a plugin for the Q# compiler that generates a Q* program

• We automatically generate simple specifications that the F* type
checker will try to enforce

• We can also prove more general properties about the Q* program’s
semantics

36

Example.qs

Example.dll
Example.cs

…

Example.fst
Q# program

Q* program

Standard bin
and obj filescompiles to

Enforcing Linear Qubit Usage
• Linear qubit usage requires that all qubits used in a gate are live and

distinct, and operations begin and end with the same live qubits

37

• The type of InitQubit says that
no new qubits were allocated

• The type of X says that the
input must be live

• The type of CNOT says that
the inputs must be live and
distinctuse q = Qubit();

CNOT(q, q);

operation InitQubit () : Qubit {
 use q = Qubit();
 return q;
}

operation ApplyX() : Unit {
 let q = InitQubit ();
 X(q);
} q is not live

inputs are not distinct

Enforcing Discard Safety
• Qubits should be unentangled when they are discarded

• A useful tool for reasoning about entanglement in quantum programs
is separation logic from classical program analysis2

• We are working on building a quantum separation logic to enforce
discard safety on top of Steel, a concurrent separation logic
embedded in F*

38

2As proposed by Zhou et al. at LICS 2021 and Le et al. at POPL 2022

operation PrepareBell (q1 : Qubit) : Unit {
 use q2 = Qubit();
 H(q1);
 CNOT(q1, q2);
}

q2 is entangled with q1

https://www.fstar-lang.org/papers/steel/

Outline

Overview

Background

SQIR: A Small Quantum Language Supporting Verification

VOQC: A Verified Optimizer for Quantum Circuits

Q*: Formal Verification for a High-level Quantum Language

Summary

39

Techniques for classical program verification can be
adapted to the quantum setting, allowing for the

development of high-assurance quantum software,
without sacrificing performance or programmability.

40

Contributions

To demonstrate this thesis, we presented:

• SQIR, which we have used to verify implementations of key quantum
algorithms

• VOQC, a verified optimizer with performance on par with unverified
tools Qiskit, tket, PyZX, and Staq

• Q*, an initial effort to provide verification for the high-level language Q#

41

Future Directions

42

Algorithm description

High-level language

High-level intermediate representation (IR)

Low-level IR

Machine-compliant IR

Machine-executable instructions

Q* (Ch 5), OQIMP (Ch 4.5)

SQIR (Ch 3)

OQASM (Ch 4.5)

VQO (Ch. 4.5)

VQO (Ch 4.5)

VOQC (Ch 4)

Future Directions

42

Algorithm description

High-level language

High-level intermediate representation (IR)

Low-level IR

Machine-compliant IR

Machine-executable instructions
?

?

?

? Better high-level languages to
encode quantum algorithms

Compilers from high-level
languages to circuits

Compiler to machine-executable
instructions (i.e., analog pulses)

Techniques for classical program verification can be
adapted to the quantum setting, allowing for the

development of high-assurance quantum software,
without sacrificing performance or programmability.

43

