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Techniques for classical program verification can be 
adapted to the quantum setting, allowing for the 

development of high-assurance quantum software, 
without sacrificing performance or programmability.
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Software ToolchainVerified Software Toolchain
Algorithm description

High-level language

High-level intermediate representation (IR)

Low-level IR

Machine-compliant IR

Machine-executable instructions
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Q* (Ch 5), OQIMP (Ch 4.5)

SQIR (Ch 3)

OQASM (Ch 4.5)

VQO (Ch. 4.5)

VQO (Ch 4.5)

VOQC (Ch 4)

= preserves semantics

This talk



Open Source Implementations
• SQIR/VOQC Coq impl. and proofs: github.com/inQWIRE/SQIR

• VOQC OCaml library: github.com/inQWIRE/mlvoqc

• VOQC Python bindings and tutorial: github.com/inQWIRE/pyvoqc

• VQO Coq impl. and proofs: github.com/inQWIRE/VQO
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https://github.com/inQWIRE/SQIR
https://github.com/inQWIRE/mlvoqc
https://github.com/inQWIRE/pyvoqc
https://github.com/inQWIRE/VQO
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Quantum Programming

• Quantum programs are often described using circuits


• “High-level” quantum programming languages are often libraries for 
constructing circuits

Circuit QASM PyQuil
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Quantum Program Semantics
• States are interpreted as vectors/matrices; applying an operation is 

left-multiplication by a matrix

• Example:  show that the program on the previous slide produces the 
state  1/ 2( |000⟩ + |111⟩)

1/ 2( |0⟩ + |1⟩) |00⟩ = 1/ 2( |000⟩ + |100⟩)|000⟩ H 0

CNOT 0 1

CNOT 1 2

1/ 2( |000⟩ + |110⟩)

1/ 2( |000⟩ + |111⟩)

H = 1
2 (1 1

1 −1)|0⟩ = (1
0) H |0⟩ = 1

2 (1
1) = 1

2
( |0⟩ + |1⟩)|00⟩ = (1

0) ⊗ (1
0)
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n qubits = -length vector2n



Verified Quantum Programming
• Formal verification is the process of proving that a program matches 

its specification

• Why should we formally verify quantum programs?
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- Current quantum machines are noisy and resource-limited
- “printf( ) debugging” affects the state
- Unit testing is expensive — programs output a distribution of results

- Requires resources exponential in the number of qubits

Stronger guarantees than testing — specifications hold over all inputs

• Can’t debug on a quantum machine

• Can’t debug (simulate) on a classical machine



Related Work
• Will existing classical verification technology “just work”?

• Is existing work on quantum formal verification sufficient?
No, quantum programs have a very different semantics

Used to verify the 
software toolchain

Contains state-of-the- 
art optimizations

Applied to interesting 
quantum programs

General semantics for 
quantum programs

SQIR & VOQCQuantum logics 
(QHL, qRHL) QBRICKS ReVerCQWIRE Giallar

CAV 2017 PLDI 2022POPL 2017CAV 2019, POPL 2019 ESOP 2021 POPL & ITP 2021
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SQIR
• A Small Quantum Intermediate Representation

• Semantics are matrices, parameterized by number of qubits
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Codeveloped with Robert Rand

= (I ⊗ CNOT) × (CNOT ⊗ I) × (H ⊗ I ⊗ I)H 0; CNOT 0 1; CNOT 1 2 3

Three qubits,

 matrix23 × 23

Denotation function

SQIR program matrix expression

unitary core

full language



Example: GHZ State Preparation
• The n-qubit GHZ state,                                           , is constructed by 

the following program


• We prove that evaluating  ghz(n) on   produces |0⟩⊗n |GHZn⟩

|GHZn⟩ = 1
2

( |0⟩⊗n + |1⟩⊗n)

|0⟩ H

. . 
.

|0⟩
|0⟩

|0⟩
|0⟩

. . 
.
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Proof “on paper”
• Base: Evaluating  ghz(1) = H 0  on  produces |0⟩ |GHZ1⟩ = 1/ 2( |0⟩ + |1⟩)

• Induction: Assume the property holds for ,  i.e.,  evaluating 
ghz(k) on  produces  . Prove that the 
property holds for .

• Recall: ghz(k+1) = ghz(k); CNOT (k-1) k

k ≥ 1
|0⟩⊗k |GHZk⟩ = 1/ 2( |0⟩⊗k + |1⟩⊗k)

k + 1

ghz(k)
|0⟩⊗ k+1

|0⟩⊗ k |0⟩
|GHZk⟩ |0⟩

1/ 2( |0⟩⊗k + |1⟩⊗k) |0⟩

1/ 2( |0⟩⊗k |0⟩ + |1⟩⊗k |0⟩)

1/ 2( |0⟩⊗k |0⟩ + |1⟩⊗k |1⟩)
|GHZk+1⟩

CNOT (k-1) k
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Proof in Coq
• We write a correctness specification in Coq, and use tactics (e.g. 

“induction”) to construct a proof


• Coq checks that our proof is valid!
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...



Design Highlights
• SQIR was conceived as a simplified version of QWIRE; we build on 

QWIRE’s libraries for matrices and complex numbers

• We made several changes to simplify proof: 

• We reference qubits using concrete indices instead of variables

• We separate the unitary core from the full language w/ measurement

See Ch 3.2 of my dissertation
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CNOT (n - 1) n is easier to translate to a matrix than CNOT x y

Unitary matrices are simpler than functions over density matrices



Verified Quantum Algorithms
• Quantum teleportation

• Superdense coding

• GHZ state preparation

• Deutsch-Jozsa algorithm

• Simon’s algorithm

• Quantum Fourier transform (QFT)

• Quantum phase estimation (QPE)

• Grover’s algorithm

• Shor’s factorization algorithm 


•
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Discussed in Ch 3.3 of my dissertation

Shih-Han Hung

Robert Rand

Liyi Li

Yuxiang Peng

Shih-Han Hung



Shor’s Algorithm
• A probabilistic, hybrid quantum/classical algorithm for factoring numbers

• We prove:

1. If the algorithm succeeds, it returns a factor

2. Each iteration succeeds with probability at least 

3. Each iteration uses  quantum gates

O((log N)−4)
O((log N)3)
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Project led by Yuxiang Peng

repeat

Input N Randomly pick a < N Find order of a mod N PostprocessCheck if a, N coprime

fail? return factor?
fail?

return factor?



Running Shor’s Algorithm
• We extract our Coq definitions to OCaml code that generates SQIR circuits, 

which we then translate to OpenQASM 2.0

• For Shor’s, we also extract classical pre- and postprocessing to OCaml

• We replace execution on a quantum machine with a call to a classical simulator 

• Factoring 15 requires 35 qubits and ~22k gates

• We’ve simulated factoring inputs up to 8 bits (< 256)
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VOQC

• A Verified Optimizer for Quantum Circuits

• We prove that transformations are semantics-preserving, i.e., they do 
not change the behavior of the program

23

equivalent

SQIR program

Optimized SQIR 
program

VOQC



VOQC Toolchain
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Python 
interface

OpenQASM

source 
circuit

target 
circuit

Coq

SQIR 
program 
+ spec

VOQC 
code + 
spec

inp
ut

output

output

OCaml

SQIR 
program

VOQC 
library

extracts to

Developer User



Example: Not Propagation

• At each step, the denotation of the program (i.e. unitary matrix) does 
not change

• We prove this via induction on the structure of the input program

• ~30 lines to implement optimization

• ~270 lines to prove soundness

X X
ZH

X X
ZHX ZZH HZHX
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• VOQC supports 4 gates sets and 8 transformations

Summary of VOQC Features

26

From Nam et al. Automated optimization of large 
quantum circuits with continuous parameters. npj 

Quantum Information.
From IBM’s Qiskit compiler 



Comparison w/ Other Optimizers

27

qiskit.org

Sivarajah et al. tket: A retargetable 
compiler for NISQ devices. 
Quantum Science & Technology.

Amy and Gheorghiu. staq — A full-
stack quantum processing tool. 
Quantum Science & Technology.

Kissinger and van de Wetering. 
PyZX: Large scale automated 
diagrammatic reasoning. EPTCS.

= implemented in VOQC

= VOQC contains a 

   similar optimization

https://qiskit.org/


Performance

28

(ii) Gate count reduction for RzQ gate set(i) Gate count reduction for IBM gate set

(iii) Running times

VOQC optimizes circuits better than existing optimizers, with 
comparable running time, and is also verified.



Circuit Mapping
• Given an input program & description of machine connectivity, mapping 

produces a program that meets connectivity constraints

E.g., how can we run the program on the left on the machine on the right?

29

4-qubit program

qubit

connection

4-qubit machine



Circuit Mapping

30

trivial layout

greedy layout

0

1

2

3

• Given an input program & description of machine connectivity, mapping 
produces a program that meets connectivity constraints


E.g., how can we run the program on the left on the machine on the right?



Verified Circuit Mapping
• For mapping, we prove that the output program is equivalent to the 

original, up to a permutation of qubits

• To support more complex algorithms, we provide translation validation 

• We prove that if our translation validation succeeds, then the two 
programs are mathematically equivalent

31

translation validation = equivalence check

compilerinput output



Outline

Overview

Background

SQIR: A Small Quantum Language Supporting Verification

VOQC: A Verified Optimizer for Quantum Circuits

Q*: Formal Verification for a High-level Quantum Language 
Summary

32



Q# Programming Language
• A recent high-level quantum programming language from Microsoft 

docs.microsoft.com/en-us/azure/quantum/user-guide/

• Looks like a classical imperative programming language, but has 
some quantum-specific features
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operation PrepareGhz (qs : Qubit[]) : Unit { 
    H (qs[0]); 
    ApplyCNOTChain(qs); 
}

https://docs.microsoft.com/en-us/azure/quantum/user-guide/


Incorrect Q# Programs, Allowed by Compiler

34

operation InitQubit () : Qubit { 
    use q = Qubit(); 
    return q; 
} 

operation ApplyX() : Unit { 
    let q = InitQubit (); 
    X(q); 
}

(ii) Reuses a discarded qubit

deallocates at the end of scope

allocates a 
fresh qubit(i) Violates no-cloning

use q = Qubit(); 
CNOT(q, q);

(iii) Discards an entangled qubit

operation PrepareBell (q1 : Qubit)  
      : Unit { 
    use q2 = Qubit(); 
    H(q1); 
    CNOT(q1, q2); 
}



Q# + F* = Q*

35

Q#

QIR SQIR executable 
codeQ*

VOQC

translate 
to

proof succeeds, 
compile source

proof fails, 
refine source

F*: A proof-oriented programming 
language from Microsoft Research



Prototype Implementation
• We wrote a plugin for the Q# compiler that generates a Q* program

• We automatically generate simple specifications that the F* type 
checker will try to enforce

• We can also prove more general properties about the Q* program’s 
semantics

36

Example.qs

Example.dll 
Example.cs 

…

Example.fst
Q# program

Q* program

Standard bin 
and obj filescompiles to 



Enforcing Linear Qubit Usage
• Linear qubit usage requires that all qubits used in a gate are live and 

distinct, and operations begin and end with the same live qubits 

37

• The type of InitQubit says that 
no new qubits were allocated

• The type of X says that the 
input must be live

• The type of CNOT says that 
the inputs must be live and 
distinctuse q = Qubit(); 

CNOT(q, q);

operation InitQubit () : Qubit { 
    use q = Qubit(); 
    return q; 
} 

operation ApplyX() : Unit { 
    let q = InitQubit (); 
    X(q); 
} q is not live

inputs are not distinct



Enforcing Discard Safety
• Qubits should be unentangled when they are discarded

• A useful tool for reasoning about entanglement in quantum programs 
is separation logic from classical program analysis2

• We are working on building a quantum separation logic to enforce 
discard safety on top of Steel, a concurrent separation logic 
embedded in F*

38

2As proposed by Zhou et al. at LICS 2021 and Le et al. at POPL 2022

operation PrepareBell (q1 : Qubit) : Unit { 
    use q2 = Qubit(); 
    H(q1); 
    CNOT(q1, q2); 
}

q2 is entangled with q1

https://www.fstar-lang.org/papers/steel/
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Techniques for classical program verification can be 
adapted to the quantum setting, allowing for the 

development of high-assurance quantum software, 
without sacrificing performance or programmability.
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Contributions

To demonstrate this thesis, we presented:


• SQIR, which we have used to verify implementations of key quantum 
algorithms


• VOQC, a verified optimizer with performance on par with unverified 
tools Qiskit, tket, PyZX, and Staq


• Q*, an initial effort to provide verification for the high-level language Q#
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Future Directions

42

Algorithm description

High-level language

High-level intermediate representation (IR)

Low-level IR

Machine-compliant IR

Machine-executable instructions

Q* (Ch 5), OQIMP (Ch 4.5)

SQIR (Ch 3)

OQASM (Ch 4.5)

VQO (Ch. 4.5)

VQO (Ch 4.5)

VOQC (Ch 4)



Future Directions
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Algorithm description

High-level language

High-level intermediate representation (IR)

Low-level IR

Machine-compliant IR

Machine-executable instructions
?

?

?

? Better high-level languages to 
encode quantum algorithms

Compilers from high-level 
languages to circuits

Compiler to machine-executable 
instructions (i.e., analog pulses)



Techniques for classical program verification can be 
adapted to the quantum setting, allowing for the 

development of high-assurance quantum software, 
without sacrificing performance or programmability.
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