The Categorical Abstract
Machine

Source Language

e tii=x : variable

C ; constant
Ax.t » abstraction
(t t) ; application
(t, t) ; pair

e Can add features like conditionals and data
constructors later

Complexity of Computation

* functions can result from computation

e constructed functions may require
environments

fun f x = val x = (f 2)
letgy=x+y valy = (f 3)
Ing

e Solution is to use closures

Evaluation Model

e eval: expr * env -> expr

* Meanings of expressions:

| x [1p=p(x)

| cllp=c

| (MN) [1p=[IMI|lp (LI N[]p)
| Ax.M |]pd=[| M|]plx<-d]

| (M\N) [1p=([I M|lp,[I N1]p)

De Bruijn Form

* |dea is to replace each name with a number
recording the variable’s binding height

e e.g. Az. (Ay. y (M. x)) (Ax. z x) becomes:

LM g
AALA D) (A2

*source: http://en.wikipedia.org/wiki/De_Bruijn_index

Modified Evaluation Model

e Using De Bruijn indices the environment
becomes a simple list of values

| 1]] (p,d)=d [|n+l[] (pd)=[In]]p
lcll p=c

| (MN) [l p=[IMI]] p([I N]] p)

| AM] pd=[| M[] (p,d)

| (MN) T p=(LIMI|] p,[I NI|] p)

CAM Combinators

* |Introduce a set of constants to encode

4

meaning rules: A, Fst, Snd, o, <, >, ° App

* Rules for evaluation:

(x°y)z=x(yz) <X, Y>27=<Xz,yz>
Fst (x, y) = x App(A(x) y, 2) =x(y, 2)
Snd (x, y) =y (X) y =x

Translation i

nto Combinatory Form

* Translation rules:

T(1) = Snd

T(n+1) = T(n) © Fst

T(c)="

T((MN))=App

T(A.M) = N(T(M))
e example:

°<T(M), T(N)>

(Ax.+(1,x)) 2| —

App ° <A(App ° <+,<1, Snd>), 2>

CAM Model

* Consider evaluation of an application (¢, t,)
1. save environmente

evaluate t; to t,
save t,” and restore e

evaluate t, to t,’
apply t," to t,’

Al

* This suggests a model using a term, code, and
stack

CAM Instructions

* Goal: transform combinatory expressions into
code for the CAM model

* A few examples:
— App ° <t t,> -> [push, t,, swap, t,5, cons, app]

— A(t) -> [cur [t]

Instruction Operational Semantics

Term Code Stack Term Code Stack
(s,) fst;C S s C S

(s, t) snd;C S t C S

S (quote c);C S C C S

S (cur C);C1 S (C:s) C1 S

S push;C S S C s.S

t swap;C S.S S C t.S

t cons;C s.S (s, t) C S
(C:s,t) app;Cl S (s, t) C;,C1 S

(m, n) plus;C S m+n C S

Translation to Code

T(App) = [app]

T(M° N)=T(N) + T(M)

T(Snd) = [snd]

T(Fst) = [fst]

T(‘c) =[quote c]

T(A(M)) = [cur(T(M))]

T(<M, N>) = [push] + T(M) + [swap] + T(N) + [cons]
T(+) = [plus]

Example

* letx=+in x (4, (x where x = 3))

(Ax.x (4, (A.x) 3)) +

App ° <A(A), A(+°Snd)>

where A = App ° <Snd, <4, B>>
B = App ° <A(Snd), 3>

A 4

[push, cur [push, snd, swap, push, quote 4, swap,
push, cur [snd], swap, quote 3, cons, app, cons,
cons, app], swap, cur [snd, plus], cons, app]

Adding Conditionals

* branch(C,, C,):

— Depending on whether the term is true or false,

replace it with the environment at the top of the
stack and execute C, or C,

 ift, thent, elset; ->
[push, t,%, branch(t,S, t;5)]

Recursion

e eg.letrecfx=..(f1)..in..

* Need to add some definition for f to the

environment before evaluating the function
body

[push, ?, cons, cur (f ¢)]

A

e ?

Recursion (cont.)

[push, ?, cons, push, cur (f¢), wind]

fC

Term Code Stack Term Code Stack
S wind;C (t,?).S s[(t,?) <- (t,s)] C S

Factorial Example

* letrec factn =
if n=0then 1elsen * fact (n—1)
in (fact 1)

[push, push, unit, cons, push, cur A, wind, cons, push, snd, swap,
qguote 1, cons, app]

A = [push, push, cur [snd, equals], swap, push, snd, swap,
quote 0, cons, cons, app, branch ([quote 1], B)

B = [push, cur [snd, times], swap, push, snd, swap, push, fst, snd,
swap, push, cur [snd, minus], swap, push, snd, swap, quote 1,
cons, cons, app, cons, app, cons, cons, app]

Questions?

