
Compiling Functional Programming Languages	

Kesha Hietala (Advisor: Gopalan Nadathur), University of Minnesota Twin Cities	

Project Objective	

To implement two classical approaches to compiling functional programming languages and to compare their behavior with regard to efficiency	

Functional Programming Languages: What and Why	

o  A formalism that provides a high-level of abstraction, which allows for:	

•  natural support for complex, structured data	

•  the ability to treat functions (programs) themselves as data	

•  a focus on problem solving rather than machine structure	

o  A powerful framework for developing complex programs correctly	

•  abstraction mechanisms match the conceptual requirements of complex, data-oriented programming	

•  mathematical structure facilitates reasoning about programs	

•  low level details can be relegated to compilation	

o  A programming vehicle that is practical and growing in use	

•  OCaml, Haskell, F#, and Swift are used in industry and gaining in popularity	

•  offer competitive efficiency for all but extremely machine-oriented computations	

Problems with Compiling Functional Languages	

o  Compilation is an essential component to closing the gap between a high-level language and what a machine can 	

 understand	

o  Compiling functional languages poses special difficulties because they treat functions as first-class objects	

  Functions can be returned as values	

	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 fun	
 f	
 x	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 let	
 g	
 y	
 =	
 x	
 +	
 y	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in	
 g	

	

 Problem: h and i must be represented by the same code, but require different values for x	

  Functions can be provided as arguments	

 	
 	
 	
 	
 	
 	
 	
 	
 fun	
 j	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 let	
 f	
 x	
 y	
 =	
 x	
 +	
 y	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in	
 let	
 g	
 z	
 =	
 z	
 3	
 in	
 g	
 (f	
 2)	

 Problem: How do we structure the evaluation of g and (f	
 2) in computing g	
 (f	
 2)?	

Approaches to Solving Compilation Problems	

o  Here we consider two approaches:	

•  the Categorical Abstract Machine (CAM), which is the basis for the popular language OCaml and 	

 relies on the use of categorical combinators	

•  compiling with continuations, which has been used in compilers for the languages Scheme and 	

 Standard ML and relies on continuations to make control flow explicit	

o  Both approaches use closures to associate code with an environment of variable bindings, allowing functions to be 	

 treated as first-class objects	

o  The most significant difference between the two approaches is how they handle control	

•  consider code generated for the expression:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 let	
 j	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 let	
 y	
 =	
 3	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in	
 let	
 f	
 x	
 =	
 x	
 +	
 y	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in	
 (f	
 2)	
 +	
 y	

CAM Approach	

•  Evaluate expressions in the context of an environment	

•  Compile j into something of the following form:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 <bind	
 y	
 to	
 3>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 <bind	
 f	
 to	
 a	
 closure>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 <evaluate	
 (f	
 2)	
 to	
 v1>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 <evaluate	
 y	
 to	
 v2>	

	
 	
 	
 	
 	
 	
 	
 	
 	
 <apply	
 +	
 to	
 v1	
 and	
 v2>	

•  Requires a machine structure that correctly 	

 maintains the environment	

Continuations-based Approach	

•  Isolate where computations should take place next and 	

 extract this part into a new let expression	

•  The binding for j becomes:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 let	
 j	
 =	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 let	
 y	
 =	
 3	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in	
 let	
 f	
 x	
 =	
 x	
 +	
 y	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in	
 let	
 w	
 =	
 (f	
 2)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in	
 w	
 +	
 y	

•  Translate the resulting expression into code with no 	

 special treatment for control	

Project Achievements	

o  Developed an understanding of the two different models of compilation	

o  Implemented both approaches for an expressive fragment of call-by-value functional languages	

o  Qualitatively characterized differences between the two models relevant to performance 	

	

•  in the CAM model the environment must be explicitly managed while in the continuations approach	

 it grows linearly	

•  control is built into the instruction sequence in the CAM model whereas explicit transfers are needed 	

 in the continuations approach	

e.g. consider the evaluation of the expression: let	
 x	
 =	
 4	
 in	
 ((let	
 y	
 =	
 2	
 in	
 y)	
 +	
 x)	
 +	
 3	

o  Current work is attempting to quantify the impact of these differences by running both implementations on large real-	

 world programs	

  CAM Approach	

•  start with empty environment e0	

•  add <x,4> to e0 to obtain e1	

•  add <y,2> to e1 to obtain e2	

•  evaluate	
 y	
 to v1 in e2	

•  restore e1	

•  evaluate	
 x	
 to v2 in e1	

•  add v1 and v2	

  Continuations-based Approach	

•  start with an empty environment	

•  add <y,2>	
 to the environment	

•  goto c1	

•  c1 : add <x,4>	
 to the environment	

 goto c2	

•  c2 : bind	
 z	
 to result of	
 x+y	

	
 	
 	
 	
 goto c3	

•  c3 : add z	
 and 3	
 and return	

val	
 h	
 =	
 (f	
 2)	

val	
 i	
 =	
 (f	
 3)	

