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Project Objective	


To implement two classical approaches to compiling functional programming languages and to compare their behavior with regard to efficiency	



Functional Programming Languages: What and Why	


o  A formalism that provides a high-level of abstraction, which allows for:	



•  natural support for complex, structured data	


•  the ability to treat functions (programs) themselves as data	


•  a focus on problem solving rather than machine structure	



o  A powerful framework for developing complex programs correctly	


•  abstraction mechanisms match the conceptual requirements of complex, data-oriented programming	


•  mathematical structure facilitates reasoning about programs	


•  low level details can be relegated to compilation	



o  A programming vehicle that is practical and growing in use	


•  OCaml, Haskell, F#, and Swift are used in industry and gaining in popularity	


•  offer competitive efficiency for all but extremely machine-oriented computations	



Problems with Compiling Functional Languages	


o  Compilation is an essential component to closing the gap between a high-level language and what a machine can 	


    understand	



o  Compiling functional languages poses special difficulties because they treat functions as first-class objects	



  Functions can be returned as values	
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    Problem: h and i must be represented by the same code, but require different values for x	



  Functions can be provided as arguments	
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                          Problem: How do we structure the evaluation of g and (f	
  2) in computing g	
  (f	
  2)?	


Approaches to Solving Compilation Problems	



o  Here we consider two approaches:	


•  the Categorical Abstract Machine (CAM), which is the basis for the popular language OCaml and 	


   relies on the use of categorical combinators	



•  compiling with continuations, which has been used in compilers for the languages Scheme and 	


   Standard ML and relies on continuations to make control flow explicit	



o  Both approaches use closures to associate code with an environment of variable bindings, allowing functions to be 	


   treated as first-class objects	



o  The most significant difference between the two approaches is how they handle control	


•  consider code generated for the expression:	
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CAM Approach	



•  Evaluate expressions in the context of an environment	


•  Compile j into something of the following form:	
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•  Requires a machine structure that correctly 	


  maintains the environment	



Continuations-based Approach	



•  Isolate where computations should take place next and 	


  extract this part into a new let expression	


•  The binding for j becomes:	
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•  Translate the resulting expression into code with no 	


  special treatment for control	



Project Achievements	


o  Developed an understanding of the two different models of compilation	



o  Implemented both approaches for an expressive fragment of call-by-value functional languages	



o  Qualitatively characterized differences between the two models relevant to performance 	

	


•  in the CAM model the environment must be explicitly managed while in the continuations approach	


  it grows linearly	



•  control is built into the instruction sequence in the CAM model whereas explicit transfers are needed 	


  in the continuations approach	



e.g. consider the evaluation of the expression: let	
  x	
  =	
  4	
  in	
  ((let	
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o  Current work is attempting to quantify the impact of these differences by running both implementations on large real-	


    world programs	
  

  CAM Approach	



•  start with empty environment e0	


•  add <x,4> to e0 to obtain e1	


•  add <y,2> to e1 to obtain e2	


•  evaluate	
  y	
  to v1 in e2	


•  restore e1	


•  evaluate	
  x	
  to v2 in e1	


•  add v1 and v2	



  Continuations-based Approach	



•  start with an empty environment	


•  add <y,2>	
  to the environment	


•  goto c1	


•  c1 : add <x,4>	
  to the environment	


         goto c2	


•  c2 : bind	
  z	
  to result of	
  x+y	
  
	
  	
  	
  	
  goto c3	


•  c3 : add z	
  and 3	
  and return	
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