
Our goal is to discover functions with the same behavior despite differences in

their interfaces. To this end, we present a technique we call adaptor synthesis

that determines whether the behavior of one function can be made to match

the behavior of another function by appropriately modifying its arguments.

Consider functions f1 and f2 below:

For any integer x and unsigned integer y, f2(y,1,x,x) will return the same value

as f1(x,y). We call the function that maps (x,y) to (y,1,x,x) an adaptor. With

this particular adaptor, we can consider f2 to be semantically equivalent to f1.

We write this relationship as f1 ← f2.

Overview

Security

If we allow for semantic equivalence between functions that have different

error behaviors, then we can use adaptor synthesis to find different versions

of a function with and without certain bugs. Adaptor synthesis can also be

used to find different versions of a function with other desirable properties,

such as efficiency or clarity.

Example: Adaptor synthesis can find that a call to OpenSSL’s BN_hex2bn

function, which has a null dereference/heap corruption bug (CVE-2016-0797),

can be replaced with a call to mbedTLS’s mbedtls_mpi_read_string.

Library Compatibility

Adaptor synthesis can ease the transition between different libraries by (1)

making sure that the new library functions have equivalent behavior to the old

library functions and (2) discovering necessary changes to function argument

structures.

Example: Adaptor synthesis can help the programmer figure out how to

replace mbedTLS’s RC4 setup function with the RC4 setup function in

OpenSSL.

Applications

We implement adaptor synthesis for Linux/x86-64 binaries using the symbolic

execution tool FuzzBALL. We implement the CEGIS synthesizer and verifier

loop by repeatedly executing the test harness below, alternating which

variables are marked as symbolic.

Adaptors are represented using symbolic variables. The exact representation

depends on the adaptor family being used, but as an example consider the

case where arguments may be replaced by other arguments or constant

values. Then you might associate two symbolic variables with each argument

of f2: one that indicates what type of replacement will occur and one that

indicates the replacing value.

Implementation

We use counterexample guided inductive synthesis (CEGIS) to search for an

adaptor that maps the arguments of f1 to the arguments of f2 (and the return

value of f2 to the return value of f1) in such a way that the behavior of the two

functions match. Our specification for synthesis is the behavior of f1 and we

define counterexamples to be inputs on which the behavior of f1 and f2 differ

with a given adaptor.

The CEGIS search is restricted to a finite family of adaptors. One family of

adaptors we support allows for an argument of f2 to be replaced by (1) an

argument of f1, (2) a constant value, or (3) a type conversion applied to an

argument of f1.

We have also experimented with adaptors that can replace arguments with

the string length of a pointer argument or a bounded depth arithmetic

expression and adaptors that can convert between different struct arguments.

We also support simple adaptations of return values.

Algorithm Evaluation

As a large-scale evaluation, we ran our adaptor synthesis tool on 13,130

function pairs from the system C library (eglibc 2.19). Using a family of

adaptors allowing argument substitution and type conversion, we found 8909

pairs to be inequivalent and 383 pairs to be equivalent. We also had 2989

timeouts and 849 crashes.

Conclusions and Future Work

Our results confirm that several instances of adaptably equivalent binary

functions exist in real-world code, and suggest that these functions can be

used to construct cleaner, less buggy, more efficient programs. Some ideas

for future work include:

• automatically generate binary code for adaptor functions

• experiment with other symbolic representations of adaptors

• add support for additional adaptor families (e.g. floating point values)

• infer preconditions in order to find adaptors that make functions equivalent

provided that their preconditions are satisfied

Acknowledgements

This research was completed, in part, with support from the Defense

Advanced Research Projects Agency (DARPA) under contract FA8750-15-C-

0110 and, in part, with support from the National Science Foundation under

grant 1563920. We acknowledge the Minnesota Supercomputing Institute

(MSI) at the University of Minnesota for providing computing resources for

large scale evaluation experiments.

1 University of Maryland, College Park 2 University of Minnesota, Twin Cities

Kesha Hietala1, Vaibhav Sharma2, and Stephen McCamant2

Finding Semantically Equivalent Binary Code By Synthesizing Adaptors

int f1(int x, unsigned y) {

 return (x << 1) + (y % 2);

}

int f2(int a, int b, int c, int d) {

 return c + d + (a & b);

}

void compare(x1, …, xn) {

 r1 = f1(x1, …, xn);

 y1, ..., ym = adapt(A, x1, …, xn);

 r2 = adapt(R, f2(y1, …, ym));

 if (r1 == r2) printf(“Match\n”);

 else printf(“Mismatch\n”);

}

Verifier

Q: Are there inputs x1,…,xn such

that f1 and f2 have different

outputs with adaptor A?

A: Yes, A is a

suitable adaptor

A: No

Q: Is there an adaptor A such that

the outputs of f1 and f2 match for

all previously generated tests

x1,…,xn?

Success: output

final adaptor A

A: No

A: Yes, x1,…,xn is a

counterexample

Failure: f1 and f2 are

not semantically

equivalent
Synthesizer

Initial input:

• functions f1 and f2

• default adaptor A

f1 ← f2 or f1 ↔ f2

f(k) = f takes k args

adaptor

abs(1) ← labs(1)

abs(1) ← llabs(1)

32-to-64S(#0) and

32-to-64Z(return value)

labs(1) ↔ llabs(1) #0

ldiv(1) ↔ lldiv(1) #0

ffs(1) ← ffsl(1)

ffs(1) ← ffsll(1)

32-to-64S(#0)

ffsl(1) ↔ ffsll(1) #0

setpgrp(0) ← setpgid (2) 0, 0

wait(1) ← waitpid(3) -1, #0, 0

wait(1) ← wait4(4) -1, #0, 0, 0

waitpid(3) ← wait4(4) #0, #1, #2, 0

wait(1) ← wait3(3) #0, 0, 0

wait3(3) ← wait4(4) -1, #0, #1, #2

umount(1) ← umount2(2) #0, 0

putchar(1) ↔

putchar_unlocked(1)

putwchar(1) ↔

putwchar_unlocked(1)

#0

recv(4) ← recvfrom(6)

send(4) ← sendto(6)

32-to-64S(#0), #1, #2,

32-to-64S(#3), 0, 0

atol(1) ↔ atoll(1) #0

atol(1) ← strtol(3)

atoi(1) ← strtol(3)

atoll(1) ← strtoll(3)

#0, 0, 10

• To find a counterexample we mark x1, …, xn as

symbolic and look for paths that execute the

“Mismatch" side of the branch.

• To find an adaptor we mark A (and R) as symbolic

and and look for paths that execute the “Match"

side of the branch.

• In addition to checking the return values r1 and

r2, we also check that f1 and f2 make identical

system calls and writes to memory.

• Of the 383 equivalent pairs we found 28

interesting true positives, which are shown on

the right.

• In the table, f1 ↔ f2 is shorthand for f1 ← f2

and f2 ← f1. # followed by a number indicates

argument substitution, while the other numbers

refer to constants. X-to-YS represents taking the

low X bits and sign extending to Y bits, X-to-YZ

is the same operation using zero extension.

• Sources of uninteresting true positives included

unimplemented system calls in the C library

(which write a value to errno and return -1) and

functions that do nothing apart from returning a

constant value.

• For scalability, we used a two minute hard

timeout for adaptor synthesis (on a machine with

64GB RAM and an Intel Xeon E5-2680v3

processor), a five second SMT solver timeout,

and limited the maximum number of times any

instruction could be executed to 4000.

• The most common causes of crashing were

missing system call support in FuzzBALL and

incorrect null dereferences caused by improper

initialization of pointer arguments.

long wrapped_BN_hex2bn(BIGNUM *h, int len);

long wrapped_mbedtls_mpi_read_string(BIGNUM *h, int radix, int len);

void mbedtls_arc4_setup

 (mbedtls_rc4_context *ctx, const unsigned char *key, unsigned int keylen);

void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data);

typedef struct {

 int x;

 int y;

 unsigned char m[256];

} mbedtls_arc4_context;

typedef struct rc4_ket_st {

 unsigned int x, y;

 unsigned int data[256];

} RC4_KEY;

16

1

