
Our goal is to discover functions with the same behavior despite differences in 

their interfaces. To this end, we present a technique we call adaptor synthesis 

that determines whether the behavior of one function can be made to match 

the behavior of another function by appropriately modifying its arguments. 

Consider functions f1 and f2 below: 
 

 

 

 

For any integer x and unsigned integer y, f2(y,1,x,x) will return the same value 

as f1(x,y). We call the function that maps (x,y) to (y,1,x,x) an adaptor. With 

this particular adaptor, we can consider f2 to be semantically equivalent to f1. 

We write this relationship as f1 ← f2. 

Overview 

Security 

If we allow for semantic equivalence between functions that have different 

error behaviors, then we can use adaptor synthesis to find different versions 

of a function with and without certain bugs. Adaptor synthesis can also be 

used to find different versions of a function with other desirable properties, 

such as efficiency or clarity.  
 

Example: Adaptor synthesis can find that a call to OpenSSL’s BN_hex2bn 

function, which has a null dereference/heap corruption bug (CVE-2016-0797), 

can be replaced with a call to mbedTLS’s mbedtls_mpi_read_string.  

 

 

 

 

 
 

Library Compatibility 

Adaptor synthesis can ease the transition between different libraries by       (1) 

making sure that the new library functions have equivalent behavior to the old 

library functions and (2) discovering necessary changes to function argument 

structures. 
 

Example: Adaptor synthesis can help the programmer figure out how to 

replace mbedTLS’s RC4 setup function with the RC4 setup function in 

OpenSSL. 

Applications 

We implement adaptor synthesis for Linux/x86-64 binaries using the symbolic 

execution tool FuzzBALL. We implement the CEGIS synthesizer and verifier 

loop by repeatedly executing the test harness below, alternating which 

variables are marked as symbolic.  

 

 

 

 

 

 

 

 
 

Adaptors are represented using symbolic variables. The exact representation 

depends on the adaptor family being used, but as an example consider the 

case where arguments may be replaced by other arguments or constant 

values. Then you might associate two symbolic variables with each argument 

of f2: one that indicates what type of replacement will occur and one that 

indicates the replacing value. 

Implementation 

We use counterexample guided inductive synthesis (CEGIS) to search for an 

adaptor that maps the arguments of f1 to the arguments of f2 (and the return 

value of f2 to the return value of f1) in such a way that the behavior of the two 

functions match. Our specification for synthesis is the behavior of f1 and we 

define counterexamples to be inputs on which the behavior of f1 and f2 differ 

with a given adaptor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The CEGIS search is restricted to a finite family of adaptors. One family of 

adaptors we support allows for an argument of f2 to be replaced by (1) an 

argument of f1, (2) a constant value, or (3) a type conversion applied to an 

argument of f1.  
 

We have also experimented with adaptors that can replace arguments with 

the string length of a pointer argument or a bounded depth arithmetic 

expression and adaptors that can convert between different struct arguments. 

We also support simple adaptations of return values. 

Algorithm Evaluation 

As a large-scale evaluation, we ran our adaptor synthesis tool on 13,130 

function pairs from the system C library (eglibc 2.19). Using a family of 

adaptors allowing argument substitution and type conversion, we found 8909 

pairs to be inequivalent and 383 pairs to be equivalent. We also had 2989 

timeouts and 849 crashes. 

Conclusions and Future Work 

Our results confirm that several instances of adaptably equivalent binary 

functions exist in real-world code, and suggest that these functions can be 

used to construct cleaner, less buggy, more efficient programs. Some ideas 

for future work include: 
 

• automatically generate binary code for adaptor functions 

• experiment with other symbolic representations of adaptors 

• add support for additional adaptor families (e.g. floating point values) 

• infer preconditions in order to find adaptors that make functions equivalent 

provided that their preconditions are satisfied 
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int f1(int x, unsigned y) { 

    return (x << 1) + (y % 2); 

} 

int f2(int a, int b, int c, int d) { 

    return c + d + (a & b); 

} 

void compare(x1, …, xn) { 

    r1 = f1(x1, …, xn); 

    y1, ..., ym = adapt(A, x1, …, xn); 

    r2 = adapt(R, f2(y1, …, ym)); 

    if (r1 == r2) printf(“Match\n”); 

    else printf(“Mismatch\n”); 

} 

Verifier 

Q: Are there inputs x1,…,xn such 

that f1 and f2 have different 

outputs with adaptor A? 

 

A: Yes, A is a 

suitable adaptor 

A: No 

Q: Is there an adaptor A such that 

the outputs of f1 and f2 match for 

all previously generated tests 

x1,…,xn? 

 

Success: output 

final adaptor A 

A: No 

A: Yes, x1,…,xn is a 

counterexample 

Failure: f1 and f2 are 

not semantically 

equivalent 
Synthesizer 

Initial input: 

• functions f1 and f2 

• default adaptor A 

f1 ← f2 or f1 ↔ f2 

f(k) = f takes k args 

adaptor 

abs(1) ← labs(1) 

abs(1) ← llabs(1) 

32-to-64S(#0) and  

32-to-64Z(return value)  

labs(1) ↔ llabs(1) #0 

ldiv(1) ↔ lldiv(1) #0 

ffs(1) ← ffsl(1) 

ffs(1) ← ffsll(1) 

32-to-64S(#0)  

ffsl(1) ↔ ffsll(1) #0 

setpgrp(0) ← setpgid (2) 0, 0 

wait(1) ← waitpid(3) -1, #0, 0 

wait(1) ← wait4(4) -1, #0, 0, 0 

waitpid(3) ← wait4(4) #0, #1, #2, 0 

wait(1) ← wait3(3) #0, 0, 0 

wait3(3) ← wait4(4) -1, #0, #1, #2 

umount(1) ← umount2(2) #0, 0 

putchar(1) ↔ 

putchar_unlocked(1) 

putwchar(1) ↔ 

putwchar_unlocked(1)  

#0 

recv(4) ← recvfrom(6)  

send(4) ← sendto(6)  

32-to-64S(#0), #1, #2, 

32-to-64S(#3), 0, 0 

atol(1) ↔ atoll(1)  #0 

atol(1) ← strtol(3)  

atoi(1) ← strtol(3)  

atoll(1) ← strtoll(3)  

#0, 0, 10 

• To find a counterexample we mark x1, …, xn as 

symbolic and look for paths that execute the 

“Mismatch" side of the branch. 
 

• To find an adaptor we mark A (and R) as symbolic 

and and look for paths that execute the “Match" 

side of the branch. 
 

• In addition to checking the return values r1 and 

r2, we also check that f1 and f2 make identical 

system calls and writes to memory. 

• Of the 383 equivalent pairs we found 28 

interesting true positives, which are shown on 

the right.  

 

• In the table, f1 ↔ f2 is shorthand for  f1 ← f2  

and f2 ← f1. # followed by a number indicates 

argument substitution, while the other numbers 

refer to constants. X-to-YS represents taking the 

low X bits and sign extending to Y bits, X-to-YZ 

is the same operation using zero extension. 

 

• Sources of uninteresting true positives included 

unimplemented system calls in the C library 

(which write a value to errno and  return -1) and 

functions that do nothing apart from returning a 

constant value.  

 

• For scalability, we used a two minute hard 

timeout for adaptor synthesis (on a machine with 

64GB RAM and an Intel Xeon E5-2680v3 

processor), a five second SMT solver timeout, 

and limited the maximum number of times any 

instruction could be executed to 4000. 

 

• The most common causes of crashing were 

missing system call support in FuzzBALL and 

incorrect null dereferences caused by improper 

initialization of pointer arguments. 

long wrapped_BN_hex2bn(BIGNUM *h, int len); 

 

 

 

long wrapped_mbedtls_mpi_read_string(BIGNUM *h, int radix, int len); 

void mbedtls_arc4_setup 

  (mbedtls_rc4_context *ctx, const unsigned char *key, unsigned int keylen); 

 

 

 

void RC4_set_key(RC4_KEY *key, int len, const unsigned char *data); 

typedef struct { 

    int x; 

    int y; 

    unsigned char m[256]; 

} mbedtls_arc4_context; 

typedef struct rc4_ket_st { 

    unsigned int x, y; 

    unsigned int data[256]; 

} RC4_KEY; 
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