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We present voqc, the first fully verified optimizer for quantum circuits, written using the Coq proof assistant. Quantum circuits are
expressed as programs in a simple, low-level language called sqir, a small quantum intermediate representation, which is deeply
embedded in Coq. Optimizations and other transformations are expressed as Coq functions, which are proved correct with respect to a
semantics of sqir programs. sqir programs denote complex-valued matrices, as is standard in quantum computation, but we treat
matrices symbolically in order to reason about programs that use an arbitrary number of quantum bits. sqir’s careful design and our
provided automation make it possible to write and verify a broad range of optimizations in voqc, including full-circuit transformations
from cutting-edge optimizers.
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1 INTRODUCTION

Programming quantum computers will be challenging, at least in the near term. Qubits will be scarce and gate pipelines
will need to be short to prevent decoherence. Fortunately, optimizing compilers can transform a source algorithm to
work with fewer resources. Where compilers fall short, programmers can optimize their algorithms by hand.

Of course, both compiler and by-hand optimizations will inevitably have bugs. As evidence of the former, Kissinger
and van de Wetering [26] discovered mistakes in the optimized outputs produced by the circuit optimizer of Nam et al.
[33], and Nam et al. themselves found that the optimization library they compared against (Amy et al. [3]) sometimes
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2 K. Hietala, R. Rand, L. Li, S. Hung, X. Wu & M. Hicks

produced incorrect results. Making mistakes when optimizing by hand is also to be expected: quantum computing can
be frustratingly unintuitive.

Unfortunately, the very factors that motivate optimizing quantum compilers make it difficult to test their correctness.
Comparing runs of a source program to those of its optimized version is often impractical due to the indeterminacy of
typical quantum algorithms and the substantial expense involved in executing or simulating them. Indeed, resources
may be too scarce, or the qubit connectivity too constrained, to run the program without optimization!

An appealing solution to this problem is to apply rigorous formal methods to prove that an optimization or algorithm
always does what it is intended to do. For example, CompCert [28] is a compiler for C programs that is written and
proved correct using the Coq proof assistant [11]. CompCert includes sophisticated optimizations whose proofs of
correctness are validated by Coq’s type checker.

In this paper, we apply CompCert’s approach to the quantum setting. We present voqc (pronounced “vox”), a verified
optimizer for quantum circuits. voqc takes as input a quantum program written in a language we call sqir (“squire”).
sqir is designed to be a small quantum intermediate representation, but it is suitable for source-level programming too:
It is not very different from languages such as Quil [45] or OpenQASM 2.0 [12], which describe quantum programs as
circuits. sqir is deeply embedded in Coq, similar to how Quil is embedded in Python via PyQuil [40], allowing us to
write sophisticated quantum programs. voqc applies a series of optimizations to sqir programs, ultimately producing
a result that is compatible with a specified quantum architecture. For added convenience, voqc provides translators
between sqir and OpenQASM 2.0.

At the core of voqc is a framework for writing transformations of sqir programs and verifying their correctness
(Section 4). To ensure that the framework is suitably expressive, we have used it to develop verified versions of a variety
of optimizations (Section 5). Many are based on those used in recent, state-of-the-art circuit optimizer developed by
Nam et al. [33]. We abstract these optimizations into a couple of different classes, and provide library functions, lemmas,
and automation to simplify their construction and proof. We have also verified circuit mapping routines that transform
sqir programs to satisfy constraints on how qubits may interact on a specified target architecture (Section 6).

We evaluated the quality of the optimizations we verified in voqc, and by extension the quality of our framework,
by measuring how well it optimizes a set of benchmark programs, compared to several other optimizing compilers
(Section 7). The results are encouraging. On a benchmark of 35 circuit programs developed by Amy and Gheorghiu
[2] we find that voqc reduces total gate count on average by 28.5% compared to 14.4% for IBM’s Qiskit compiler [37],
and 18.5% for CQC’s t⋃︀ket̃︀ [43]. On the same benchmarks, voqc reduces 𝑇 -gate count (an important measure when
considering fault tolerance) on average by 43.1% compared to 45.4% by Amy and Gheorghiu [2] and 47.1% by the PyZX
optimizer [26], although voqc outperforms both in terms of total gate count reduction. Experiments on an even larger
benchmark suite (detailed in Appendix A) yield similar results. In sum, voqc is expressive enough to verify a range of
useful optimizations, yielding performance competitive with leading unverified compilers.

voqc is the first fully verified optimizer for general quantum programs (Section 8). Amy et al. [4] developed a verified
optimizing compiler from source Boolean expressions to reversible circuits and Fagan and Duncan [15] verified an
optimizer for ZX-diagrams representing Clifford circuits; however, neither of these tools handle general quantum
programs. Tao et al. [48] developed Giallar, which uses symbolic execution and SMT solving to automatically verify
circuit transformations in the Qiskit compiler; however, Giallar is limited to verifying correct application of local
equivalences and does not provide a way to describe general quantum states, which limits the types of optimizations
that it can reason about. Smith and Thornton [44] presented a compiler with built-in translation validation via QMDD
equivalence checking [32]. However, QMDDs represent quantum state concretely, which means that the validation
Manuscript submitted to ACM
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A Verified Optimizer for Quantum Circuits 3

time will increase exponentially with the number of qubits in the compiled program. Burgholzer et al. [6] improved
on this model by taking advantage of the fact that the identity matrix (which should be the result of composing a
circuit with its optimized adjoint) can be efficiently represented using a decision diagram [7], allowing them to perform
equivalence checking on circuits that use tens of thousands of operations. However, like any other translation validation
technique, this approach adds extra compile time overhead, and has so far only been used to validate applications
of local rewrite rules. In contrast to these, sqir denotes quantum programs as symbolical complex-valued matrices,
which allows us to reason about arbitrary quantum computation and verify once-and-for-all interesting, non-local
optimizations, independently of the number of qubits in the optimized program.

Our work1 on voqc and sqir are steps toward a broader goal of developing a full-scale verified compiler toolchain.
Next steps include developing certified transformations from higher-level quantum languages to sqir and implementing
optimizations with different objectives, e.g., that aim to reduce the probability that a result is corrupted by quantum
noise. All code is freely available online.2

2 OVERVIEW

We begin with a brief background on quantum programs, focusing on the challenges related to formal verification. We
then provide an overview of voqc and sqir, summarizing how they address these challenges.

2.1 Preliminaries

Quantum programs operate over quantum states, which consist of one or more quantum bits (a.k.a. qubits). A single
qubit is represented as a vector of complex numbers ∐︀𝛼, 𝛽̃︀ such that ⋃︀𝛼 ⋃︀2 + ⋃︀𝛽 ⋃︀2 = 1. The vector ∐︀1, 0̃︀ represents the
state ⋃︀0̃︀ while vector ∐︀0, 1̃︀ represents the state ⋃︀1̃︀. A state written ⋃︀𝜓̃︀ is called a ket, following Dirac’s notation. We say
a qubit is in a superposition of ⋃︀0̃︀ and ⋃︀1̃︀ when both 𝛼 and 𝛽 are non-zero. Just as Schrodinger’s cat is both dead and
alive until the box is opened, a qubit is only in superposition until it is measured, at which point the outcome will be 0
with probability ⋃︀𝛼 ⋃︀2 and 1 with probability ⋃︀𝛽 ⋃︀2. Measurement is not passive: it has the effect of collapsing the state to
match the measured outcome, i.e., either ⋃︀0̃︀ or ⋃︀1̃︀. As a result, all subsequent measurements return the same answer.

Operators on quantum states are linear mappings. These mappings can be expressed as matrices, and their application
to a state expressed as matrix multiplication. For example, the Hadamard operator 𝐻 is expressed as a matrix 1

⌋︂

2
( 1 1
1 −1 ).

Applying 𝐻 to state ⋃︀0̃︀ yields state ∐︀ 1
⌋︂

2
, 1
⌋︂

2
̃︀, also written as ⋃︀+̃︀. Many quantum operators are not only linear, they

are also unitary—the conjugate transpose (or adjoint) of their matrix is its inverse. This ensures that multiplying a qubit
by the operator preserves the qubit’s sum of norms squared. Since a Hadamard is its own adjoint, it is also its own
inverse: hence 𝐻 ⋃︀+̃︀ = ⋃︀0̃︀.

A quantum state with 𝑛 qubits is represented as vector of length 2𝑛 . For example, a 2-qubit state is represented as a
vector ∐︀𝛼, 𝛽,𝛾, 𝛿̃︀ where each component corresponds to (the square root of) the probability of measuring ⋃︀00̃︀, ⋃︀01̃︀,
⋃︀10̃︀, and ⋃︀11̃︀, respectively. Because of the exponential size of the complex quantum state space, it is not possible to
simulate a 100-qubit quantum computer using even the most powerful classical computer!

1sqir and voqc were first presented in Hietala et al. [19]. This paper is an expanded version of that paper with new content including: (a) support for
additional gate sets, (b) expanded circuit mapping and mapping validation, (c) extended evaluation results, and (d) improvements to presentation.
2Software links:

● The sqir and voqc Coq definitions and proofs are available at https://github.com/inQWIRE/SQIR.
● The voqc OCaml library is available at https://github.com/inQWIRE/mlvoqc and can be installed with “opam install voqc”.
● The voqc Python bindings and tutorials are available at https://github.com/inQWIRE/pyvoqc.
● The voqc benchmarks and benchmarking scripts are available at https://github.com/inQWIRE/VOQC-benchmarks.

Manuscript submitted to ACM
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⋃︀0̃︀ 𝐻 ●

⋃︀0̃︀ ●

⋃︀0̃︀

(a) Quantum Circuit

H 0

CNOT 0 1

CNOT 1 2

(b) Quil

def ghz_state(qubits):

program = Program()

program += H(qubits[0])

for q1,q2 in zip(qubits, qubits[1:]):

program += CNOT(q1, q2)

return program

(c) PyQuil (arbitrary number of qubits)

Fig. 1. Example quantum program: GHZ state preparation

⎛
⎜⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎟⎟⎟
⎠

𝑛-qubit operators are represented as 2𝑛 × 2𝑛 matrices. For example, the 𝐶𝑋 (or 𝐶𝑁𝑂𝑇 )
operator over two qubits is expressed as the matrix shown at the right. It expresses a controlled
not operation—if the first qubit (called the control) is ⋃︀0̃︀ then both qubits are mapped to
themselves, but if the first qubit is ⋃︀1̃︀ then the second qubit (called the target) is negated, e.g.,
𝐶𝑋 ⋃︀00̃︀ = ⋃︀00̃︀ while 𝐶𝑋 ⋃︀10̃︀ = ⋃︀11̃︀.

𝑛-qubit operators can be used to create entanglement, which is a situation where two qubits
cannot be described independently. For example, while the vector ∐︀1, 0, 0, 0̃︀ can be written as ∐︀1, 0̃︀ ⊗ ∐︀1, 0̃︀ where ⊗ is
the tensor product, the state ∐︀ 1

⌋︂

2
, 0, 0, 1

⌋︂

2
̃︀ cannot be similarly decomposed. We say that ∐︀ 1

⌋︂

2
, 0, 0, 1

⌋︂

2
̃︀ is an entangled

state.

2.2 Quantum Circuits

Quantum programs are typically expressed as circuits, as shown in Figure 1(a). In these circuits, each horizontal wire
represents a qubit and boxes on these wires indicate quantum operators, or gates. Gates can either be unitary operators
(e.g.,𝐻 ,𝐶𝑋 ) or non-unitary ones (e.g., measurement). In software, quantum circuit programs are often represented using
lists of instructions that describe the different gate applications. For example, Figure 1(b) is the Quil [45] representation
of the circuit in Figure 1(a).

In the QRAM model, quantum computers are used as co-processors to classical computers. The classical computer
generates descriptions of circuits to send to the quantum computer and then processes the measurement results.
High-level quantum programming languages are designed to follow this model. For example, Figure 1(c) shows a
program in PyQuil [40], a quantum programming framework embedded in Python. The ghz_state function takes an
array qubits and constructs a circuit that prepares the Greenberger-Horne-Zeilinger (GHZ) state [16], which is an
𝑛-qubit entangled quantum state of the form

⋃︀GHZ𝑛̃︀ = 1⌋︂
2
(⋃︀0̃︀⊗𝑛 + ⋃︀1̃︀⊗𝑛).

Calling ghz_state([0,1,2]) returns the Quil program in Figure 1(b), which produces the quantum state 1
⌋︂

2
(⋃︀000̃︀+⋃︀111̃︀).

The high-level language may provide facilities to optimize constructed circuits, e.g., to reduce gate count, circuit depth,
and qubit usage. It may also perform transformations to account for hardware-specific details like the number of qubits,
available gates, or connectivity between physical qubits.

Manuscript submitted to ACM
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Python 
interface

OpenQASM

source 
circuit

target 
circuit

Coq

SQIR 
program 
+ spec

VOQC 
code + 
spec

inp
ut

output

output

OCaml

SQIR 
program

VOQC 
library

extracts to

Fig. 2. The voqc architecture.

2.3 sqir: A SmallQuantum Intermediate Representation Supporting Verification

sqir is a simple circuit-oriented language deeply embedded in the Coq proof assistant in a manner similar to how Quil is
embedded in Python via PyQuil. We use sqir’s host language, Coq, to define the syntax and semantics of sqir programs
and to express properties about quantum states. We developed a library of lemmas and tactic-based automation to
assist in writing proofs about quantum programs; such proofs make heavy use of complex numbers and linear algebra.
These proofs are aided by isolating sqir’s unitary core from primitives for measurement, which require consideration
of probability distributions of outcomes (represented as density matrices); this means that (sub-)programs that lack
measurement can have simpler proofs. Either way, in sqir we perform reasoning symbolically. For example, we can
prove that every circuit generated by the sqir-equivalent of ghz_state produces the expected state ⋃︀GHZ𝑛̃︀ when
applied to input lists of length 𝑛, for any 𝑛. We present sqir’s syntax and semantics along with an example program
and verified property of correctness in Section 3; for more details see Hietala et al. [18].

2.4 voqc: A Verified Optimizer forQuantum Circuits

While sqir is suitable for proving correctness properties about source programs like ghz_state, its primary use has been
as the intermediate representation of voqc, our verified optimizer for quantum circuits, and the signature achievement
of this paper. An optimizer is a function from programs to programs, with the intention that the output program has
the same semantics as the input. In voqc, we prove this is always the case: a voqc optimization 𝑓 is a Coq function
over sqir circuit 𝐶 , and we prove that the semantics of the input circuit 𝐶 is always equivalent to the semantics of the
output 𝑓 (𝐶).

The voqc approach stands in contrast to prior work that relies on translation validation [6, 26, 44], which may fail
to identify latent bugs in the optimizer, while adding compile-time overhead. By proving correctness with respect to
an explicit semantics for input/output programs (i.e., that of sqir), voqc optimizations are flexible in their expression.
Prior work has been limited to peephole optimizations [48], leaving highly effective, full-circuit optimizations we have
proved correct in voqc out of reach.

The structure of voqc is summarized in Figure 2. sqir programs and voqc transformations are defined and formally
verified in Coq (left). We use Coq’s standard code extraction mechanism [23] to extract sqir programs and voqc
transformations into OCaml (middle). sqir programs are extracted to OCaml code that generates OpenQASM 2.0 [12], a
standard representation for quantum circuits, and voqc is extracted to a standalone OCaml library that takes as input

Manuscript submitted to ACM
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OpenQASM circuits (right). Since a number of quantum programming frameworks, including Qiskit [37], t⋃︀ket̃︀ [43],
Quil [41], Project Q [46] and Cirq [13], can output OpenQASM, this allows us to run voqc on a variety of generated
circuits, without requiring the user to program in OCaml or Coq. We also provide a Python wrapper around our OCaml
library to make voqc compatible with the many Python-based frameworks for compiling quantum programs (e.g.,
Qiskit, t⋃︀ket̃︀, Quil, Cirq).

voqc is implemented in about 15K lines of Coq, with roughly 6K lines for general-purpose sqir programmanipulation,
4K lines for program optimizations, and 5K lines for circuit mapping.

3 SQIR: A SMALL QUANTUM INTERMEDIATE REPRESENTATION

Here we present the syntax and semantics of sqir, a small quantum intermediate representation. The sqir language is
composed of two parts: a core language of unitary operators and a full language that incorporates measurement. This
paper only uses the former; see Hietala et al. [18, §3.3] for a discussion of the latter.

The semantics of a unitary sqir program is expressed directly as a matrix, in contrast to the full sqir, which treats
programs as functions over density matrices. This matrix semantics greatly simplifies proofs, both of the correctness of
unitary optimizations (the focus of voqc) and of source programs, many of which are essentially unitary (measurement
is the very last step).

3.1 Syntax

A unitary sqir program𝑈 is a sequence of applications of gates 𝐺 to qubits 𝑞.

𝑈 ∶= 𝑈1; 𝑈2 ⋃︀ 𝐺 𝑞 ⋃︀ 𝐺 𝑞1 𝑞2

Qubits are referred to by natural numbers that index into a global register of quantum bits. Each sqir program is
parameterized by a set of unitary one- and two-qubit gates (from which 𝐺 is drawn) and the dimension of the global
register (i.e., the number of available qubits). In Coq, a unitary sqir program U has type ucom g n, where g identifies the
gate set and n is the size of the global register.

Fixpoint ghz (n : N) : ucom base n :=

match n with

| 0⇒ I 0

| 1⇒ H 0

| S n'⇒ ghz n'; CX (n'−1) n'

end.

As an example, consider the program to the right, which is equivalent to
PyQuil’s ghz_state from Figure 1(c). The Coq function ghz recursively con-
structs a sqir program, in this case a Coq value of type ucom base n, which uses
gate set base. When run, this program prepares the GHZ state. When 𝑛 is 0,
ghz produces a sqir program that is just the identity gate 𝐼 applied to qubit 0.
When 𝑛 is 1, the result is the Hadamard gate 𝐻 applied to qubit 0. When 𝑛 is
greater than 1, ghz constructs the program𝑈1;𝑈2, where𝑈1 is the ghz circuit
on n' (i.e., 𝑛 − 1) qubits, and 𝑈2 is the appropriate 𝐶𝑋 gate. The result of ghz 3

is equivalent to the circuit shown in Figure 1(a).

3.2 Semantics

Suppose that 𝑀1 and 𝑀2 are the matrices corresponding to unitary gates 𝑈1 and 𝑈2, which we want to apply to a
quantum state vector ⋃︀𝜓̃︀. Matrix multiplication is associative, so𝑀2(𝑀1 ⋃︀𝜓̃︀) is equivalent to (𝑀2𝑀1) ⋃︀𝜓̃︀. Moreover,
multiplying two unitary matrices yields a unitary matrix. As such, the semantics of sqir program𝑈1; 𝑈2 is naturally
described by the unitary matrix𝑀2𝑀1.
Manuscript submitted to ACM
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J𝑈1; 𝑈2K𝑑 = J𝑈2K𝑑 × J𝑈1K𝑑

J𝐺1 𝑞K𝑑 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑎𝑝𝑝𝑙𝑦1(𝐺1, 𝑞, 𝑑) well-typed
02𝑑 otherwise

J𝐺2 𝑞1 𝑞2K𝑑 =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀

𝑎𝑝𝑝𝑙𝑦2(𝐺2, 𝑞1, 𝑞2, 𝑑) well-typed
02𝑑 otherwise

Fig. 3. Semantics of unitary sqir programs, assuming a global register of dimension 𝑑 . The 𝑎𝑝𝑝𝑙𝑦𝑘 function maps a gate name to its

corresponding unitary matrix and extends the intended operation to the given dimension by applying an identity operation on every

other qubit in the system.

This semantics is shown in Figure 3. If a program is not well-typed its denotation is the zero matrix (of size 2𝑑 × 2𝑑 ).
A program𝑈 is well-typed if every gate application is valid, meaning that its index arguments are within the bounds of
the global register, and no index is repeated. The latter requirement enforces linearity and thereby quantum mechanics’
no-cloning theorem, which says that it is impossible to create a copy of an arbitrary quantum state.

Otherwise, the program’s denotation is the composition of the matrices corresponding to its unitary gates. The only
wrinkle is that a full program consists of many gates, each operating on only 1 or 2 of the total qubits; thus, a gate
application’s matrix needs to apply the identity operation to the qubits not being operated on. This is what 𝑎𝑝𝑝𝑙𝑦1 and
𝑎𝑝𝑝𝑙𝑦2 do. For example, 𝑎𝑝𝑝𝑙𝑦1(𝐺𝑢 , 𝑞, 𝑑) = 𝐼2𝑞 ⊗𝑢 ⊗ 𝐼2(𝑑−𝑞−1) where 𝑢 is the matrix interpretation of the gate 𝐺𝑢 and
𝐼𝑘 is the 𝑘 ×𝑘 identity matrix. The 𝑎𝑝𝑝𝑙𝑦2 function requires us to decompose the two-qubit unitary into a sum of tensor
products: For instance, 𝐶𝑋 can be written as ⋃︀0̃︀ ∐︀0⋃︀ ⊗ 𝐼2 + ⋃︀1̃︀ ∐︀1⋃︀ ⊗ 𝜎𝑥 where 𝜎𝑥 = ( 0 1

1 0 ). We then have

𝑎𝑝𝑝𝑙𝑦2(𝐶𝑋, 𝑞1, 𝑞2, 𝑑) = 𝐼2𝑞1 ⊗ ⋃︀0̃︀ ∐︀0⋃︀ ⊗ 𝐼2𝑟 ⊗ 𝐼2 ⊗ 𝐼2𝑠 + 𝐼2𝑞1 ⊗ ⋃︀1̃︀ ∐︀1⋃︀ ⊗ 𝐼2𝑟 ⊗ 𝜎𝑥 ⊗ 𝐼2𝑠

where 𝑟 = 𝑞2 − 𝑞1 − 1 and 𝑠 = 𝑑 − 𝑞2 − 1, assuming 𝑞1 < 𝑞2.
In our development we define the semantics of sqir programs over gate set 𝐺 ∈ {𝑅𝜃,𝜙,𝜆, 𝐶𝑋} where 𝑅𝜃,𝜙,𝜆 is a

general single-qubit rotation parameterized by three real-valued rotation angles and 𝐶𝑋 is the standard two-qubit
controlled-not gate. This is our base set of gates. It is the same as the underlying set used by OpenQASM [12] and is
universal, meaning that it can approximate any unitary operation to within arbitrary error. The matrix interpretation of
the single-qubit 𝑅𝜃,𝜙,𝜆 gate is

⎛
⎝

cos(𝜃⇑2) −𝑒𝑖𝜆 sin(𝜃⇑2)
𝑒
𝑖𝜙 sin(𝜃⇑2) 𝑒

𝑖(𝜙+𝜆) cos(𝜃⇑2)
⎞
⎠

and the matrix interpretation of the 𝐶𝑋 gate is given in Section 2.1.
Common single-qubit gates can be defined in terms of 𝑅𝜃,𝜙,𝜆 . For example, the two single-qubit gates used in our

GHZ example—identity 𝐼 and Hadamard 𝐻—are respectively defined as 𝑅0,0,0 and 𝑅𝜋⇑2,0,𝜋 . The Pauli 𝑋 ("NOT") gate is
𝑅𝜋,0,𝜋 and the Pauli 𝑍 gate is 𝑅0,0,𝜋 . We can also define more complex operations as sqir programs. For example, the
𝑆𝑊𝐴𝑃 operation, which swaps two qubits, can be defined as a sequence of three 𝐶𝑋 gates.

3.3 Source-Program Proofs

sqir is part of a general purpose framework for reasoning about quantum programs. While this paper focuses on sqir’s
use in proving circuit optimizations correct (by proving sqir program transformations are semantics preserving), the
framework can be used to prove correctness properties of sqir programs, too. As an illustration, we present a sqir
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8 K. Hietala, R. Rand, L. Li, S. Hung, X. Wu & M. Hicks

proof of correctness for GHZ state preparation. We close with discussion of ongoing efforts to prove more sophisticated
algorithms correct in sqir.

Definition GHZ (n : N) : Vector (2 ^ n) :=

match n with

| 0 ⇒ I 1

| S n'⇒ 1
⌋︂

2
∗ ⋃︀0̃︀⊗𝑛 + 1

⌋︂

2
∗ ⋃︀1̃︀⊗𝑛

end.

GHZ Proof. As an example of a proof we can carry out using sqir, we
show that ghz, sqir’s Greenberger-Horne-Zeilinger (GHZ) state [16] prepa-
ration circuit given in Section 3.1, correctly produces the mathematical
GHZ state. The GHZ state is an 𝑛-qubit entangled quantum state of the
form 1

⌋︂

2
(⋃︀0̃︀⊗𝑛 + ⋃︀1̃︀⊗𝑛). This vector can be defined in Coq as shown to

the right.
Our goal is to show that for any n > 0 the circuit generated by ghz n

produces the corresponding GHZ n vector when applied to ⋃︀0̃︀⊗𝑛 :

Lemma ghz_correct : ∀ n : N, n > 0→ Jghz nK𝑛 × ⋃︀0̃︀⊗𝑛 = GHZ n.

The proof proceeds by induction on 𝑛. The 𝑛 = 0 case is trivial as it contradicts our hypothesis. For 𝑛 = 1 we show
that 𝐻 applied to ⋃︀0̃︀ produces the ⋃︀+̃︀ state. In the inductive step, the induction hypothesis says that the result of
applying ghz n’ to the input state nket n’ ⋃︀0̃︀ is the state ( 1

⌋︂

2
∗ ⋃︀0̃︀⊗𝑛

′

+
1
⌋︂

2
∗ ⋃︀1̃︀⊗𝑛

′

) ⊗ ⋃︀0̃︀. By applying CX (n' − 1) n' to
this state, we show that ghz (n' + 1) = GHZ (n' + 1).

Further Proofs. It turns out that with the right abstractions, sqir is capable of verifying a range of quantum algorithms,
from Grover’s search algorithm to quantum phase estimation. Most recently, sqir has been used for a proof of an end-
to-end implementation of Shor’s factorization algorithm [34]. All in all, the sqir development includes implementations
and proofs of GHZ state preparation, superdense coding, quantum teleportation, the Deutsch-Jozsa algorithm, Simon’s
algorithm, Grover’s algorithm, quantum phase estimation, and Shor’s algorithm. As this paper’s focus is voqc, we
refer the interested reader to separate papers [18, 34] for detailed discussion of these source-program proofs and proof
techniques.

4 VOQC: A VERIFIED FRAMEWORK FOR OPTIMIZING QUANTUM PROGRAMS

This section introduces general features of voqc’s design. We discuss specific optimizations in Section 5 and circuit
mapping routines in Section 6.

4.1 voqc Program Representation

To ease the implementation of and proofs about sqir program transformations, we developed a framework of supporting
library functions that operate on sqir programs as lists of gate applications, rather than on the native sqir representation.
The conversion code takes a sequence of gate applications in the original sqir program and flattens it so that a program
like (𝐺1 𝑝 ;𝐺2 𝑞);𝐺3 𝑟 is represented as the Coq list (︀𝐺1 𝑝 ; 𝐺2 𝑞; 𝐺3 𝑟⌋︀. The denotation of the list representation is the
denotation of its corresponding sqir program. Examples of the list operations voqc provides include:

● Finding the next gate acting on a qubit that satisfies some predicate 𝑓 .
● Propagating a gate using a set of cancellation and commutation rules (see Section 5.1).
● Replacing a sub-program with an equivalent program (see Section 5.2).
● Computing the maximal matching prefix of two programs.

We verify that these functions have the intended behavior (e.g., in the last example, that the returned sub-program is
indeed a prefix of both input programs).
Manuscript submitted to ACM



417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

A Verified Optimizer for Quantum Circuits 9

Table 1. Gate sets used in voqc. 𝑟 is a real parameter and 𝑞 is a rational parameter.

Full Single-qubit gates: 𝐼 , 𝑋, 𝑌 , 𝑍 ,𝐻, 𝑆, 𝑇 , 𝑆
†
, 𝑇

†
, 𝑅𝑥(𝑟), 𝑅𝑦(𝑟),

𝑅𝑧(𝑟), 𝑅𝑧𝑄(𝑞),𝑈1(𝑟), 𝑈2(𝑟, 𝑟), 𝑈3(𝑟, 𝑟, 𝑟)
Two-qubit gates: 𝐶𝑋, 𝐶𝑍, 𝑆𝑊𝐴𝑃

Three-qubit gates: 𝐶𝐶𝑋, 𝐶𝐶𝑍

RzQ Single-qubit gates: 𝑋, 𝐻, 𝑅𝑧𝑄(𝑞)
Two-qubit gates: CX

IBM Single-qubit gates: 𝑈1(𝑟), 𝑈2(𝑟, 𝑟), 𝑈3(𝑟, 𝑟, 𝑟)
Two-qubit gates: CX

Mapping Single-qubit gates: ∞
Two-qubit gates: 𝐶𝑋, 𝑆𝑊𝐴𝑃

4.2 Program Equivalence

The voqc optimizer takes as input a sqir program and attempts to reduce its total gate count by applying a series
of optimizations. For each optimization, we verify that it is semantics preserving (or sound), meaning that the output
program is guaranteed to be equivalent to the input program. We say that two unitary programs of dimension 𝑑 are
equivalent, written 𝑈1 ≡ 𝑈2, if their denotation is the same, i.e., J𝑈1K𝑑 = J𝑈2K𝑑 . We can then write our soundness
condition for optimization function optimize as follows.

Definition sound {G} (optimize : ∀ {d : N}, ucom G d→ ucom G d) := ∀ (d : N) (u : ucom G d), Joptimize uK𝑑 ≡ JuK𝑑 .

This property is quantified over G, d, and u, meaning that the property holds for any program that uses any set of gates

and any number of qubits. The optimizations in our development are defined over particular gate sets, described below,
but still apply to programs that use any number of qubits. Our statements of soundness also occasionally have an
additional precondition that requires program u to be well typed.

We also support two more general versions of equivalence: We say that two circuits are equivalent up to a global
phase, written 𝑈1 ≅ 𝑈2, when there exists a 𝜃 such that J𝑈1K𝑑 = 𝑒𝑖𝜃 J𝑈2K𝑑 ; We say that two circuits are equivalent up to
permutation if there exist permutation matrices 𝑃1, 𝑃2 such that J𝑈1K𝑑 = 𝑃1 × J𝑈2K𝑑 × 𝑃2.3 Equivalence up to a global
phase is useful in the quantum setting because ⋃︀𝜓̃︀ and 𝑒𝑖𝜃 ⋃︀𝜓̃︀ (for 𝜃 ∈ R) represent the same physical state. Equivalence
up to permutation is useful in the context of circuit mapping (Section 6) where inserted SWAP gates may change the
positions of qubits in the system.

4.3 Supported Gate Sets

The voqc framework supports arbitrary gate sets; the utility functions and properties described above are all parame-
terized by choice of gate set. However, the program transformations in Sections 5 and 6 are defined over the particular
gate sets listed in Table 1. Using a custom gate set for a transformation makes writing the transformation cleaner and
simplifies the proof of soundness (typically, each gate corresponds to one case in the proof). We summarize which
transformations are defined over which gate sets in Figure 4.

The full gate set is used for parsing and consists of a variety of standard quantum gates. It aims for completeness:
Instead of having to translate a 𝑇 gate in the source OpenQASM program to the semantically equivalent 𝑈1(𝜋⇑4),
we can translate it directly to 𝑇 . Likewise, we can translate the three-qubit CCX gate directly to CCX, rather than

3A permutation matrix is a square binary matrix with a single 1 entry in each row and column and 0s elsewhere. Left-multiplying a matrix 𝐴 by a
permutation matrix 𝑃 (i.e., 𝑃𝐴) permutes𝐴’s rows, and right-multiplying (𝐴𝑃 ) permutes𝐴’s columns.
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OpenQASM 2.0

Full Gate Set

IBM Gate SetRzQ Gate Set Mapping Gate Set

1-qubit gate merging (§5.2.3)

Not propagation (§5.1.1)
Gate cancellation (§5.1.2)

Hadamard reduction (§5.2.1)
Rotation merging (§5.2.2)

Greedy layout (§6.1)
Swap routing (§6.2)

Mapping validation (§6.3)

Fig. 4. Summary of features available in voqc.

Table 2. Decompositions of multi-qubit gates in the full gate set into simpler gates in the full gate set. Decomposition to the RzQ or

IBM gate sets can be performed by further applying the rules in Table 3. Note that CX is primitive in every gate set we support.

Input Gate Decomposition

𝐶𝑋 𝑎 𝑏 𝐶𝑋 𝑎 𝑏

𝐶𝑍 𝑎 𝑏 𝐻 𝑏; 𝐶𝑋 𝑎 𝑏; 𝐻 𝑏

𝑆𝑊𝐴𝑃 𝑎 𝑏 𝐶𝑋 𝑎 𝑏; 𝐶𝑋 𝑏 𝑎; 𝐶𝑋 𝑎 𝑏

𝐶𝐶𝑍 𝑎 𝑏 𝑐 𝐶𝑋 𝑏 𝑐 ; 𝑇 † 𝑐 ; 𝐶𝑋 𝑎 𝑐 ; 𝑇 𝑐 ; 𝐶𝑋 𝑏 𝑐 ; 𝑇 † 𝑐 ;
𝐶𝑋 𝑎 𝑐 ; 𝐶𝑋 𝑎 𝑏 ; 𝑇 † 𝑏; 𝐶𝑋 𝑎 𝑏 ; 𝑇 𝑎; 𝑇 𝑏; 𝑇 𝑐

𝐶𝐶𝑋 𝑎 𝑏 𝑐 𝐻 𝑐 ; 𝐶𝐶𝑍 𝑎 𝑏 𝑐 ; 𝐻 𝑐

decomposing it into a series of one- and two-qubit gates (potentially incorrectly). As shown in Figure 4, although
optimizations are defined over different gate sets internally, in the interface we expose, all functions are defined over
the full gate set. We convert between the different gate sets using the rules in Tables 2 and 3.

The RzQ gate set, inspired by the one used by Nam et al. [33], consists of {𝐻, 𝑋, 𝑅𝑧𝑄, 𝐶𝑋} where 𝑅𝑧𝑄(𝑞) describes
rotation about the 𝑧-axis by 𝑞𝜋 for 𝑞 ∈ Q. We use a rational parameter for the 𝑅𝑧𝑄 gate instead of a real parameter
in an effort to avoid unsound extraction to OCaml. Our Coq formalization relies on an axiomatized definition of real
numbers [22], so there is no way to extract Coq definitions using reals to OCaml without providing an implementation
of real arithmetic. One option (used for the IBM gate set below) is to extract Coq reals to OCaml floats, although this
leads to the possibility of floating-point error not accounted for in our proofs.

The IBM gate set is the default basis for the Qiskit compiler, and is supported in many quantum compilers. It includes
the two-qubit CX gate, along with three parameterized single-qubit gates:

𝑈1(𝜆) =
⎛
⎝
1 0
0 𝑒

𝑖𝜆

⎞
⎠
, 𝑈2(𝜙, 𝜆) =

1⌋︂
2
⎛
⎝

1 −𝑒𝑖𝜆

𝑒
𝑖𝜙

𝑒
𝑖(𝜙+𝜆)

⎞
⎠
, 𝑈3(𝜃,𝜙, 𝜆) =

⎛
⎝

cos(𝜃⇑2) −𝑒𝑖𝜆 sin(𝜃⇑2)
𝑒
𝑖𝜙 sin(𝜃⇑2) 𝑒

𝑖(𝜙+𝜆) cos(𝜃⇑2)
⎞
⎠
.

𝑈3 gates are the most general,4 and require two quantum “pulses” to implement on hardware.𝑈2 and𝑈1 gates are
more specialized, but require one and zero pulses, respectively. One interesting property of this gate set (which is not
true of the RzQ gate set) is that any sequence of single-qubit gates can be combined into a single gate (see Section 5.2.3).

4
𝑈1 and𝑈2 gates can both be written in terms of𝑈3 :𝑈1(𝜆) = 𝑈3(0, 0, 𝜆) and𝑈2(𝜙, 𝜆) = 𝑈3(

𝜋
2 , 𝜙, 𝜆).
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Table 3. Decompositions of single-qubit gates in the full gate set into gates in the RzQ and IBM gate sets. When needed, we perform

implict coercion from real expressions (e.g.,
𝑟
𝜋
) to rational numbers.

Input RzQ Decomp. IBM Decomp.

𝐼 𝑅𝑧𝑄(0) 𝑈1(0)
𝑋 𝑋 𝑈3(𝜋, 0, 𝜋)
𝑌 𝑅𝑧𝑄(

3
2 ); 𝑋 ; 𝑅𝑧𝑄( 12 ) 𝑈3(𝜋,

𝜋
2 ,

𝜋
2 )

𝑍 𝑅𝑧𝑄(1) 𝑈1(𝜋)

𝐻 𝐻 𝑈2(0, 𝜋)
𝑆 𝑅𝑧𝑄(

1
2 ) 𝑈1(

𝜋
2 )

𝑇 𝑅𝑧𝑄(
1
4 ) 𝑈1(

𝜋
4 )

𝑆† 𝑅𝑧𝑄(
3
2 ) 𝑈1(−

𝜋
2 )

𝑇 † 𝑅𝑧𝑄(
7
4 ) 𝑈1(−

𝜋
4 )

𝑅𝑥 (𝑟) 𝐻 ; 𝑅𝑧𝑄( 𝑟𝜋 ); 𝐻 𝑈3(𝑟,−
𝜋
2 ,

𝜋
2 )

𝑅𝑦(𝑟) 𝑅𝑧𝑄(
3
2 ); 𝐻 ; 𝑅𝑧𝑄( 𝑟𝜋 ); 𝐻 ; 𝑅𝑧𝑄( 12 ) 𝑈3(𝑟, 0, 0)

𝑅𝑧(𝑟) 𝑅𝑧𝑄(
𝑟
𝜋
) 𝑈1(𝑟)

𝑅𝑧𝑄(𝑞) 𝑅𝑧𝑄(𝑞) 𝑈1(𝑞𝜋)

𝑈1(𝑟) 𝑅𝑧𝑄(
𝑟
𝜋
) 𝑈1(𝑟)

𝑈2(𝑟1, 𝑟2) 𝑅𝑧𝑄(
𝑟2
𝜋
− 1); 𝐻 ; 𝑅𝑧𝑄( 𝑟1𝜋 ) 𝑈2(𝑟1, 𝑟2)

𝑈3(𝑟1, 𝑟2, 𝑟3) 𝑅𝑧𝑄(
𝑟3
𝜋
− 1⇑2); 𝐻 ; 𝑅𝑧𝑄( 𝑟1𝜋 ); 𝐻 ; 𝑅𝑧𝑄( 𝑟2𝜋 + 1⇑2) 𝑈3(𝑟1, 𝑟2, 𝑟3)

However, during combination, it is not possible to stay in the domain of rational numbers, which forces us to change
the parameter type to be real, leading to potential unsoundness in extraction (discussed below).

The mapping gate set is used for circuit mapping (Section 6). It is parameterized by a set of single-qubit gates
and includes multi-qubit gates CX and SWAP. In our implementation, we instantiate the mapping gate set using the
single-qubit gates from the full gate set.

To compute a program’s denotation, voqc’s gates must be translated into the CX and 𝑅𝜃,𝜙,𝜆 gates in sqir’s base set.
In the RzQ set, 𝐻 , 𝑋 , and 𝑅𝑧𝑄(𝑞) are translated into 𝑅𝜋⇑2,0,𝜋 , 𝑅𝜋,0,𝜋 , and 𝑅0,0,𝑞𝜋 respectively. In the IBM set,𝑈3(𝜃,𝜙, 𝜆)
is translated into 𝑅𝜃,𝜙,𝜆 . We compute the denotation of a program in the full gate set using the rules in Tables 2 and 3.

4.4 Extraction to Executable Code

We use Coq’s standard code extractionmechanism [23] to extract voqc into a standalone OCaml library. For performance,
our library uses OCaml primitives for describing multi-precision rational numbers, maps and sets, rather than the
code generated from Coq. We thus implicitly trust that the OCaml implementation of these data types is consistent
with Coq’s; we believe that this is a reasonable assumption. A more problematic assumption is that the behavior of
OCaml’s 64-bit float type matches the behavior of Coq’s mathematical reals. As mentioned above, we extract the real
parameters of the IBM and full gate sets to floats, which may allow for floating-point error not accounted for in our
soundness proofs. We would prefer to use a full-precision datatype, like rationals, but the trigonometric functions
used to optimize 𝑈2 and 𝑈3 gates are not defined over rationals. We note that existing quantum compilers also use
float parameters, so they are equally susceptible to floating-point errors. They may even enforce precision limitations
internally: For example, Qiskit’s CommutativeCancellation optimization pass [38] uses a cutoff precision of 10−5,
below which rotations are treated as identities.
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𝑋 𝑞; 𝐻 𝑞 ≡ 𝐻 𝑞; 𝑍 𝑞

𝑋 𝑞; 𝑅𝑧𝑄(𝑘) 𝑞 ≅ 𝑅𝑧𝑄(2 − 𝑘) 𝑞; 𝑋 𝑞

𝑋 𝑞1; 𝐶𝑋 𝑞1 𝑞2 ≡ 𝐶𝑋 𝑞1 𝑞2; 𝑋 𝑞1; 𝑋 𝑞2
𝑋 𝑞2; 𝐶𝑋 𝑞1 𝑞2 ≡ 𝐶𝑋 𝑞1 𝑞2; 𝑋 𝑞2

Fig. 5. Equivalences used in not propagation.

𝑋 ● 𝐻

𝑋
→

● 𝑋 𝐻

𝑋 𝑋
→ ● 𝐻 𝑍

Fig. 6. An example of not propagation. In the first step the leftmost 𝑋 gate propagates through the𝐶𝑋 gate to become two 𝑋 gates.

In the second step the upper 𝑋 gate propagates through the 𝐻 gate and the lower 𝑋 gates cancel.

In order to make voqc compatible with existing Python-based frameworks for compiling quantum programs (e.g.,
Qiskit [37], pytket [8], Quilc [41], Cirq [13]), we provide a Python wrapper around the voqc OCaml library. To interface
between Python and OCaml, we wrap the OCaml code in a C library (following standard conventions [21]) and call to
this C library using Python’s ctypes [36]. For convenience, we have written Python code that makes voqc look like an
optimization pass in IBM’s Qiskit, allowing us to take advantage of this framework’s utilities for quantum programming
(e.g., constructing and printing circuits, unverified optimizations and mapping routines). We use the voqc Qiskit pass
in our evaluation in Section 7.2.

5 OPTIMIZATIONS

voqc primarily implements optimizations inspired by the state-of-the-art circuit optimizer by Nam et al. [33]. As such,
we do not claim credit for the optimizations themselves. Rather, our contribution is a framework that is sufficiently
flexible that it can be used to prove such state-of-the-art optimizations correct.

voqc implements two basic kinds of optimizations: replacement and propagate-cancel. The former simply identifies a
pattern of gates and replaces it with an equivalent pattern. The latter works by commuting sets of gates when doing so
produces an equivalent quantum program—often with the effect of “propagating” a particular gate rightward in the
program—until two adjacent gates can be removed because they cancel out.

5.1 Optimization by Propagation and Cancellation

Our propagate-cancel optimizations have two steps. First we localize a set of gates by repeatedly applying commutation
rules. Then we apply a circuit equivalence to replace that set of gates. In voqc, most optimizations of this form use a
library of code patterns, but one—not propagation—is slightly different, so we discuss it first.

5.1.1 Not Propagation. The goal of not propagation is to remove cancelling 𝑋 (“not”) gates. Two 𝑋 gates cancel when
they are adjacent or they are separated by a circuit that commutes with 𝑋 . We find 𝑋 gates separated by commuting
circuits by repeatedly applying the propagation rules in Figure 5. An example application of the not propagation
algorithm is shown in Figure 6.

This implementation may introduce extra 𝑋 gates at the end of a circuit or extra 𝑍 gates in the interior of the circuit.
Extra 𝑍 gates are likely to be cancelled by the gate cancellation and rotation merging passes that follow, and moving
𝑋 gates to the end of a circuit makes the rotation merging optimization more likely to succeed. We note that our
Manuscript submitted to ACM
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●

𝑅𝑧𝑄(𝑘) 𝐻 𝐻 ≡
●

𝐻 𝐻 𝑅𝑧𝑄(𝑘)

●

● ≡
●

●

● ●

𝑅𝑧𝑄(𝑘) 𝑅𝑧𝑄(𝑘
′
)

≡
● ●

𝑅𝑧𝑄(𝑘
′
) 𝑅𝑧𝑄(𝑘)

● ●

≡
● ●

𝑅𝑧𝑄(𝑘) ● ≡ ● 𝑅𝑧𝑄(𝑘)
●

𝐻 ● 𝐻 ≡
●

𝐻 ● 𝐻

Fig. 7. Commutation equivalences for single- and two-qubit gates adapted from Nam et al. [33, Figure 5]. We use the second and

third rules for propagating both single- and two-qubit gates.

version of this optimization is a simplification of Nam et al.’s, which supports the three-qubit CCX gate; this gate can
be decomposed into a {𝐻,𝑅𝑧𝑄,CX} program per Table 2. In our experiments, we did not observe any difference in
performance between voqc and Nam et al. due to this simplification.

5.1.2 Gate Cancellation. The single- and two-qubit gate cancellation optimizations rely on the same propagate-cancel
pattern used in not propagation, except that gates are returned to their original location if they fail to cancel. To support
this pattern, we provide a general propagate function in voqc. This function takes as inputs (i) an instruction list, (ii) a
gate to propagate, and (iii) a set of rules for commuting and cancelling that gate. At each iteration, propagate performs
the following actions:

(1) Check if a cancellation rule applies. If so, apply that rule and return the modified list.
(2) Check if a commutation rule applies. If so, commute the gate and recursively call propagate on the remainder

of the list.
(3) Otherwise, return the gate to its original position.

We have proved that our propagate function is sound when provided with valid commutation and cancellation rules.
Each commutation or cancellation rule is implemented as a partial Coq function from an input circuit to an output

circuit. A common pattern in these rules is to identify one gate (e.g., an 𝑋 gate), and then to look for an adjacent gate it
might commute with (e.g.,𝐶𝑋) or cancel with (e.g., 𝑋 ). For commutation rules, we use the rewrite rules shown Figure 7.
For cancellation rules, we use the fact that 𝐻 , 𝑋 , and 𝐶𝑋 are all self-cancelling and 𝑅𝑧𝑄(𝑘) and 𝑅𝑧𝑄(𝑘′) combine to
become 𝑅𝑧𝑄(𝑘 + 𝑘′).

5.2 Circuit Replacement

We have implemented three optimizations that work by replacing one pattern of gates with an equivalent one; no
preliminary propagation is necessary. These aim either to reduce the gate count directly, or to set the stage for additional
optimizations.

5.2.1 Hadamard Reduction. The Hadamard reduction routine employs the equivalences shown in Figure 8 to reduce
the number of 𝐻 gates in the program. Removing 𝐻 gates is useful because 𝐻 gates limit the size of the {𝑅𝑧𝑄,𝐶𝑋}
subcircuits used in the rotation merging optimization.

5.2.2 Rotation Merging. The rotation merging optimization allows for combining 𝑅𝑧𝑄 gates that are not physically
adjacent in the circuit. This optimization is more sophisticated than the previous optimizations because it does not
rely on small structural patterns (e.g., that adjacent 𝑋 gates cancel), but rather on more general (and non-local) circuit
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𝐻 𝑆 𝐻 ≅ 𝑆
† 𝐻 𝑆

† 𝐻 𝑆
† 𝐻 ≅ 𝑆 𝐻 𝑆

●

𝐻 𝑆
† 𝑆 𝐻 ≅

●

𝑆 𝑆
†

●

𝐻 𝑆 𝑆
† 𝐻 ≅

●

𝑆
† 𝑆

Fig. 8. Equivalences for removing Hadamard gates adapted from Nam et al. [33, Figure 4]. 𝑆 is the phase gate 𝑅𝑧𝑄(1⇑2) and 𝑆† is its

inverse 𝑅𝑧𝑄(3⇑2).

behavior. The basic idea behind rotation merging is to (i) identify subcircuits consisting of only 𝐶𝑋 and 𝑅𝑧𝑄 gates and
(ii) merge 𝑅𝑧𝑄 gates within those subcircuits that are applied to qubits in the same logical state.

The argument for the correctness of this optimization relies on the phase polynomial representation of a circuit. Let
𝐶 be a circuit consisting of 𝐶𝑋 gates and rotations about the 𝑧-axis. Then on basis state ⋃︀𝑥1, ..., 𝑥𝑛̃︀ for 𝑥𝑖 ∈ {0, 1}, 𝐶 will
produce the state

𝑒
𝑖𝑝(𝑥1,...,𝑥𝑛) ⋃︀ℎ(𝑥1, ..., 𝑥𝑛)̃︀

where ℎ ∶ {0, 1}𝑛 → {0, 1}𝑛 is an affine reversible function and

𝑝(𝑥1, ..., 𝑥𝑛) =
𝑙

∑
𝑖=1

(𝜃𝑖 mod 2𝜋) 𝑓𝑖(𝑥1, ..., 𝑥𝑛)

is a linear combination of affine boolean functions. 𝑝(𝑥1, ..., 𝑥𝑛) is called the phase polynomial of circuit 𝐶 . Each
rotation gate in the circuit is associated with one term of the sum and if two terms of the phase polynomial satisfy
𝑓𝑖(𝑥1, ..., 𝑥𝑛) = 𝑓𝑗(𝑥1, ..., 𝑥𝑛) for some 𝑖 ≠ 𝑗 , then the corresponding 𝑖 and 𝑗 rotations can be merged.

As an example, consider the two circuits shown below.

● 𝑅𝑧(𝑘
′
)

𝑅𝑧(𝑘) ●

≡ ● 𝑅𝑧(𝑘 + 𝑘
′
)

●

To prove that these circuits are equivalent, we can consider their behavior on basis state ⋃︀𝑥1, 𝑥2̃︀. Applying 𝑅𝑧𝑄(𝑘) to
the basis state ⋃︀𝑥̃︀ produces the state 𝑒𝑖𝑘𝜋𝑥 ⋃︀𝑥̃︀ and 𝐶𝑋 ⋃︀𝑥,𝑦̃︀ produces the state ⋃︀𝑥, 𝑥 ⊕𝑦̃︀ where ⊕ is the xor operation.
Thus evaluation of the left-hand circuit proceeds as follows:

⋃︀𝑥1, 𝑥2̃︀ → 𝑒
𝑖𝑘𝜋𝑥2 ⋃︀𝑥1, 𝑥2̃︀ → 𝑒

𝑖𝑘𝜋𝑥2 ⋃︀𝑥1, 𝑥1 ⊕ 𝑥2̃︀ → 𝑒
𝑖𝑘𝜋𝑥2 ⋃︀𝑥2, 𝑥1 ⊕ 𝑥2̃︀ → 𝑒

𝑖𝑘𝜋𝑥2𝑒
𝑖𝑘
′
𝜋𝑥2 ⋃︀𝑥2, 𝑥1 ⊕ 𝑥2̃︀ .

Whereas evaluation of the right-hand circuit produces

⋃︀𝑥1, 𝑥2̃︀ → ⋃︀𝑥1, 𝑥1 ⊕ 𝑥2̃︀ → ⋃︀𝑥2, 𝑥1 ⊕ 𝑥2̃︀ → 𝑒
𝑖(𝑘+𝑘

′
)𝜋𝑥2 ⋃︀𝑥2, 𝑥1 ⊕ 𝑥2̃︀ .

The two resulting states are equal because 𝑒𝑖𝑘𝜋𝑥2𝑒𝑖𝑘
′
𝜋𝑥2 = 𝑒𝑖(𝑘+𝑘

′
)𝜋𝑥2 . This implies that the unitary matrices corre-

sponding to the two circuits are the same. We can therefore replace the circuit on the left with the one on the right,
removing one gate from the circuit.

Our rotation merging optimization follows the reasoning above for arbitrary {𝑅𝑧𝑄,𝐶𝑋} circuits. For every gate
in the program, it tracks the Boolean function associated with every qubit (the Boolean functions above are 𝑥1, 𝑥2,
𝑥1 ⊕ 𝑥2), and merges 𝑅𝑧𝑄 rotations when they are applied to qubits associated with the same Boolean function. To
prove equivalence over {𝑅𝑧𝑄,𝐶𝑋} circuits, we show that the original and optimized circuits produce the same output
on every basis state. We have found evaluating behavior on basis states to be useful for proving equivalences that are
not as direct as those listed in Figures 7 and 8.
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𝑈1(𝜆1) ; 𝑈1(𝜆2) = 𝑈1(𝜆1 + 𝜆2) 𝑈1(𝜆1) ; 𝑈2(𝜙2, 𝜆2) = 𝑈2(𝜙2, 𝜆1 + 𝜆2)
𝑈1(𝜆1) ; 𝑈3(𝜃2, 𝜙2, 𝜆2) = 𝑈3(𝜃2, 𝜙2, 𝜆1 + 𝜆2) 𝑈2(𝜙1, 𝜆1) ; 𝑈1(𝜆2) = 𝑈2(𝜙1 + 𝜆2, 𝜆1)
𝑈2(𝜙1, 𝜆1) ; 𝑈2(𝜙2, 𝜆2) = 𝑈3(𝜋 − 𝜙1 − 𝜆2, 𝜙2 + 𝜋

2 , 𝜆1 +
𝜋
2 ) 𝑈3(𝜃1, 𝜙1, 𝜆1) ; 𝑈1(𝜆2) = 𝑈3(𝜃1, 𝜙1 + 𝜆2, 𝜆1)

Fig. 9. Rules for single-qubit gate merging.

Although our merge operation is identical to Nam et al.’s, our approach to constructing {𝑅𝑧𝑄, CX} subcircuits differs.
We construct a {𝑅𝑧𝑄,CX} subcircuit beginning from a 𝑅𝑧𝑄 gate whereas Nam et al. begin from a CX gate. The result of
this simplification is that our subcircuits may be smaller than Nam et al.’s, causing us to miss some opportunities for
merging. However, in our experiments (Appendix A) we found that this choice impacted only one benchmark.

5.2.3 Single-qubit Gate Merging. In the IBM gate set, any two single-qubit gates can be combined into one gate. This
allows us to implement an optimization over programs in the IBM gate set (which Qiskit calls Optimize1qGates
[38]) that merges all adjacent single-qubit gate by applying the rules in Figure 9, along with a more complex rule for
combining a𝑈2 and𝑈3 gate or two𝑈3 gates.

In the more complex rule, the two gates are first converted into a sequence of Euler rotations about the 𝑦- and 𝑧-axes:
𝑈3(𝜃,𝜙, 𝜆) Ð→ 𝑅𝑧(𝜙) ⋅ 𝑅𝑦(𝜃) ⋅ 𝑅𝑧(𝜆). Call this a ZYZ rotation. Next, local identities are applied to combine the two
ZYZ rotations into a single ZYZYZ rotation. Then the interior YZY rotation is converted to a new ZYZ rotation, yielding
a ZZYZZ rotation. Finally, this is simplified to a ZYZ rotation, which can be represented as a𝑈3 gate. For example, here
is the process for combining two𝑈3 gates:

𝑈3(𝜃1, 𝜙1, 𝜆1) ; 𝑈3(𝜃2, 𝜙2, 𝜆2) = 𝑅𝑧(𝜙2) ⋅ 𝑅𝑦(𝜃2) ⋅ 𝑅𝑧(𝜆2) ⋅ 𝑅𝑧(𝜙1) ⋅ 𝑅𝑦(𝜃1) ⋅ 𝑅𝑧(𝜆1)

= 𝑅𝑧(𝜙2) ⋅ (︀𝑅𝑦(𝜃2) ⋅ 𝑅𝑧(𝜆2 +𝜙1) ⋅ 𝑅𝑦(𝜃1)⌋︀ ⋅ 𝑅𝑧(𝜆1)

= 𝑅𝑧(𝜙2) ⋅ (︀𝑅𝑧(𝛾) ⋅ 𝑅𝑦(𝛽) ⋅ 𝑅𝑧(𝛼)⌋︀ ⋅ 𝑅𝑧(𝜆1)

= 𝑅𝑧(𝜙2 +𝛾) ⋅ 𝑅𝑦(𝛽) ⋅ 𝑅𝑧(𝛼 + 𝜆1)

=𝑈3(𝛽, 𝜙2 +𝛾, 𝛼 + 𝜆1)

where 𝛼 , 𝛽 , 𝛾 satisfy 𝑅𝑦(𝜃2) ⋅ 𝑅𝑧(𝜆2 + 𝜙1) ⋅ 𝑅𝑦(𝜃1) = 𝑅𝑧(𝛾) ⋅ 𝑅𝑦(𝛽) ⋅ 𝑅𝑧(𝛼). The angles 𝛼 , 𝛽 , 𝛾 can be generated using
arithmetic over trignometric functions sin, cos, arccos, and arctan [14], as shown in Figure 10. Proving the generation
of 𝛼 , 𝛽 , 𝛾 correct was the most difficult part of verifying soundness for this optimization; to our knowledge, we are the
first to formally verify this method in a proof assistant.

5.3 Scheduling

The voqc optimize function applies each of the optimizations we have discussed one after the other, in the following
order (due to Nam et al.):

0, 1, 3, 2, 3, 1, 2, 4, 3, 2

where 0 is not propagation, 1 is Hadamard reduction, 2 is single-qubit gate cancellation, 3 is two-qubit gate cancellation,
and 4 is rotation merging. Nam et al. justify this ordering at length, though they do not prove that it is optimal. In brief,
removing 𝑋 and 𝐻 gates (0,1) allows for more effective application of the gate cancellation (2,3) and rotation merging
(4) optimizations. In our experiments (Section 7), we observed that single-qubit gate cancellation and rotation merging
were the most effective at reducing gate count.

We (optionally) conclude by converting gates to the IBM gate set and performing single-qubit gate merging in order
to produce output in the {𝑈1,𝑈2,𝑈3,𝐶𝑋} gate set for fair comparison with other tools.
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Definition rm02 (x y z : R) : R := sin x ∗ cos z + cos x ∗ cos y ∗ sin z.
Definition rm12 (x y z : R) : R := sin y ∗ sin z.
Definition rm22 (x y z : R) : R := cos x ∗ cos z − sin x ∗ cos y ∗ sin z.
Definition rm10 (x y z : R) : R := sin y ∗ cos z.
Definition rm11 (x y z: R) : R := cos y.
Definition rm20_min (x y z : R) : R := cos x ∗ sin z + sin x ∗ cos y ∗ cos z.
Definition rm21 (x y z : R) : R := sin x ∗ sin y.

Definition atan2 (y x : R) : R :=
if 0 <? x then atan (y⇑x)
else if x <? 0 then if negb (y <? 0) then atan (y⇑x) + PI else atan (y⇑x) − PI

else if 0 <? y then PI⇑2 else if y <? 0 then −PI⇑2 else 0.

Definition yzy_to_zyz (x y z : R) : R ∗ R ∗ R :=
if rm22 x y z <? 1
then if −1 <? rm22 x y z

then (atan2 (rm12 x y z) (rm02 x y z), acos (rm22 x y z), atan2 (rm21 x y z) (rm20_min x y z))
else (− atan2 (rm10 x y z) (rm11 x y z), PI, 0)

else (atan2 (rm10 x y z) (rm11 x y z), 0, 0).

(* Correctness property: *)

Lemma yzy_to_zyz_correct : ∀ 𝜃1 𝜉 𝜃2 𝜉1 𝜃 𝜉2,
yzy_to_zyz 𝜃1 𝜉 𝜃2 = (𝜉1, 𝜃 , 𝜉2)→
y_rotation 𝜃2 × phase_shift 𝜉 × y_rotation 𝜃1
∝ phase_shift 𝜉2 × y_rotation 𝜃 × phase_shift 𝜉1.

Fig. 10. Code for converting a YZY rotation to a ZYZ rotation.

5.4 Verifying Low-Level Circuit Equivalences

voqc optimizations make heavy use of circuit equivalences such as those shown in Figures 5 and 7 to 9. To prove that
voqc optimizations are sound, we must formally verify these equivalences are correct. Such proofs require showing
equality between two matrix expressions, which can be tedious in the case where the matrix size is left symbolic. For
example, consider the following equivalence used in not propagation:

𝑋 𝑛; 𝐶𝑋 𝑚 𝑛 ≡ 𝐶𝑋 𝑚 𝑛; 𝑋 𝑛

for arbitrary 𝑛,𝑚 and dimension 𝑑 . Applying our definition of equivalence, this amounts to proving

𝑎𝑝𝑝𝑙𝑦1(𝑋,𝑛,𝑑) × 𝑎𝑝𝑝𝑙𝑦2(𝐶𝑋,𝑚,𝑛,𝑑) = 𝑎𝑝𝑝𝑙𝑦2(𝐶𝑋,𝑚,𝑛,𝑑) × 𝑎𝑝𝑝𝑙𝑦1(𝑋,𝑛,𝑑), (1)

per the semantics in Figure 3. Suppose both sides of the equation are well typed (𝑚 < 𝑑 and 𝑛 < 𝑑 and𝑚 ⇑= 𝑛), and
consider the case where𝑚 < 𝑛 (the 𝑛 <𝑚 case is similar). We expand 𝑎𝑝𝑝𝑙𝑦1 and 𝑎𝑝𝑝𝑙𝑦2 as follows with 𝑝 = 𝑛 −𝑚 − 1
and 𝑞 = 𝑑 − 𝑛 − 1:

𝑎𝑝𝑝𝑙𝑦1(𝑋,𝑛,𝑑) = 𝐼2𝑛 ⊗ 𝜎𝑥 ⊗ 𝐼2𝑞

𝑎𝑝𝑝𝑙𝑦2(𝐶𝑋,𝑚,𝑛,𝑑) = 𝐼2𝑚 ⊗ ⋃︀1̃︀∐︀1⋃︀ ⊗ 𝐼2𝑝 ⊗ 𝜎𝑥 ⊗ 𝐼2𝑞 + 𝐼2𝑚 ⊗ ⋃︀0̃︀∐︀0⋃︀ ⊗ 𝐼2𝑝 ⊗ 𝐼2 ⊗ 𝐼2𝑞
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Here, 𝜎𝑥 is the matrix interpretation of the 𝑋 gate and ⋃︀1̃︀∐︀1⋃︀⊗𝜎𝑥 + ⋃︀0̃︀∐︀0⋃︀⊗ 𝐼2 is the matrix interpretation of the𝐶𝑋 gate
(in Dirac notation). We can complete the proof of equivalence by normalizing and simplifying each side of Equation (1),
showing both sides to be the same.

We address the tedium of such proofs in voqc by automating the matrix normalization and simplification steps. We
provide a Coq tactic called gridify for proving general equivalences correct. Rather than assuming𝑚 < 𝑛 < 𝑑 as above,
the gridify tactic does case analysis, immediately solving all cases where the circuit is ill-typed (e.g.,𝑚 = 𝑛 or 𝑑 ≤𝑚)
and thus has the zero matrix as its denotation. In the remaining cases (𝑚 < 𝑛 and 𝑛 <𝑚 above), it puts the expressions
into a form we call grid normal and applies a set of matrix identities.

In grid normal form, each arithmetic expression has addition on the outside, followed by tensor product, with
multiplication on the inside, i.e., ((.. × ..) ⊗ (.. × ..)) + ((.. × ..) ⊗ (.. × ..)). The gridify tactic rewrites an expression
into this form by using the following rules of matrix arithmetic:

● 𝐼𝑚𝑛 = 𝐼𝑚 ⊗ 𝐼𝑛

● 𝐴 × (𝐵 +𝐶) = 𝐴 × 𝐵 +𝐴 ×𝐶
● (𝐴 + 𝐵) ×𝐶 = 𝐴 ×𝐶 + 𝐵 ×𝐶

● 𝐴 ⊗ (𝐵 +𝐶) = 𝐴 ⊗ 𝐵 +𝐴 ⊗𝐶
● (𝐴 + 𝐵) ⊗𝐶 = 𝐴 ⊗𝐶 + 𝐵 ⊗𝐶
● (𝐴 ⊗ 𝐵) × (𝐶 ⊗𝐷) = (𝐴 ×𝐶) ⊗ (𝐵 ×𝐷)

The first rule is applied to facilitate application of the other rules. (For instance, in the example above, 𝐼2𝑛 would be
replaced by 𝐼2𝑚 ⊗ 𝐼2⊗ 𝐼2𝑝 to match the structure of the 𝑎𝑝𝑝𝑙𝑦2 term.) After expressions are in grid normal form, gridify
simplifies them by removing multiplication by the identity matrix and rewriting simple matrix products (e.g. 𝜎𝑥𝜎𝑥 = 𝐼2).

In our example, normalization and simplification by gridify rewrites each side of the equality in Equation (1) to be
the following

𝐼2𝑚 ⊗ ⋃︀1̃︀∐︀1⋃︀ ⊗ 𝐼2𝑝 ⊗ 𝐼2 ⊗ 𝐼2𝑞 + 𝐼2𝑚 ⊗ ⋃︀0̃︀∐︀0⋃︀ ⊗ 𝐼2𝑝 ⊗ 𝜎𝑥 ⊗ 𝐼2𝑞 ,

thus proving that the two expressions are equal.
We use gridify to verify most of the equivalences used in the optimizations given in Sections 5.1 and 5.2. The tactic

is most effective when equivalences are small: The equivalences used in gate cancellation and Hadamard reduction apply
to patterns of at most five gates applied to up to three qubits within an arbitrary circuit. For equivalences over large
sets of qubits, like the one used in rotation merging, we do not use gridify directly, but still rely on our automation for
matrix simplification.

6 CIRCUIT MAPPING

While optimization aims to reduce qubit and gate usage to make programs more feasible to run on near-term machines,
circuit mapping addresses the connectivity constraints of near-term machines, transforming a program so that it is able
to run on a machine [42, 53]. Circuit mapping algorithms take as input an arbitrary circuit and output a circuit that
respects the connectivity constraints of the underlying architecture. Consider the connectivity constraints of IBMs’s
16-qubit Guadalupe machine [20], shown in Figure 11. This is a representative example of a superconducting qubit
system, where qubits are laid out in a 2-dimensional grid and possible interactions are described by edges between
qubits. For instance, a CX gate may be applied between qubits 1 and 4, but not between qubits 1 and 3.

Circuit mapping typically consists of two stages: layout (or placement), which associates each logical qubit in the
program with some physical qubit on the machine; and routing, which, given an initial layout, transforms a program to
satisfy connectivity constraints. Routing is often performed by inserting SWAP gates to “move” qubits to compatible
locations when they are used together in a two-qubit gate. This approach is used by the routing routines in Qiskit [37]
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Fig. 11. IBM’s Guadalupe machine [20]. The different colors on nodes and connections reflect different error rates (darker means

lower error and lighter means higher error).

● 𝐻

● ●

P1 = CX 0 2; CX 2 1; H 0; CX 2 3

(a) Input program

3

0

2

1 ×

× ● × ● ×

× 𝐻 × ●

P2 = SWAP 0 2; CX 1 2; SWAP 1 2;
CX 1 0; H 2; SWAP 1 2; CX 2 3

(b) Trivial layout

3

0

1

2 ● 𝐻

● ×

× ●

P3 = CX 0 1; CX 1 2; H 0; SWAP 1 2; CX 2 3

(c) Greedy layout

Fig. 12. Circuit mapping example

and t⋃︀ket̃︀ [43]. Another approach is to compute the unitary matrix corresponding to the input (sub)circuit and then
resynthesize the circuit in a way that satisfies connectivity constraints; Staq [2] implements this approach.

6.1 Verified Layout

We provide two layout functions in voqc: trivial layout, which maps logical qubit 𝑖 to physical qubit 𝑖 , and greedy layout,
which takes into account the program and architecture characteristics. Greedy layout scans through the program and
allocates logical qubits to adjacent physical qubits when they are used together in a CX gate, until all logical qubits are
allocated. Figure 12(a) shows an example quantum circuit that uses four qubits. Imagine that we would like to map this
circuit to an architecture with four qubits, connected in a ring. Figure 12(b) shows the result of arranging the circuit’s
qubits according to a trivial layout, and Figure 12(c) shows the result of arranging the qubits according to our greedy
layout routine. The greedy layout allocates logical qubits 0 and 2 (and 1 and 2) to adjacent physical qubits since they are
used together in a CX gate.

We verify that both the trivial and greedy layout functions produce well-formed layouts, i.e., one-to-one mappings
between logical and physical qubits. We also provide a function to convert a list 𝑙 to a layout where physical qubit 𝑖
maps to logial qubit 𝑙(︀𝑖⌋︀; we prove that this function produces a well-formed layout if the input list has no duplicates
and every element in the list is less than the length of the list. We use this function to generate safe layouts for our
translation validation routine in Section 6.3.
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(a) (b) (c)

Fig. 13. Architectures supported in voqc. From left to right: LNN, LNN ring, and 2D grid. Each architecture is shown with a fixed

number vertices, but in our implementation the number of vertices is a parameter.

6.2 Verified Routing

We have implemented a simple 𝑆𝑊𝐴𝑃-based routing method for unitary sqir programs and verified that it is sound
(up to a permutation of qubits) and produces programs that satisfy the relevant hardware constraints. Our routing
method is parameterized by a description of the connectivity of an architecture, which includes a function to check
whether an edge is in the connectivity graph and a function to find a path between two nodes. Given an initial layout,
our implementation iterates through the gates of the input program and, every time a 𝐶𝑋 occurs between two logical
qubits whose corresponding physical qubits are not adjacent in the underlying architecture, inserts 𝑆𝑊𝐴𝑃s to move the
control adjacent to the target.

Figure 12(b-c) show the result of applying our routing routine to the circuit in Figure 12(a) starting from the trivial
and greedy layouts. In Figure 12(b), three 𝑆𝑊𝐴𝑃 gates are inserted to ensure that the circuit can execute on the target
hardware, while in Figure 12(c) only one 𝑆𝑊𝐴𝑃 is inserted. In both produced circuits, the wires are ordered: top left
physical qubit, top right, lower right, lower left.

Although our routing algorithm is simple (it is equivalent to Qiskit’s BasicSwap pass [38]), it allows for some
flexibility in design because we do not specify the method for finding paths in the connectivity graph, which allows,
for example, strategies that take into account error characteristics of the machine [47]. We have built-in connectivity
graphs for the linear nearest neighbor (LNN), LNN ring, and 2D nearest neighbor architectures pictured in Figure 13.

6.3 Verified Translation Validation

There are a wide variety of proposed layout and routing techniques, many of which involve complex search algorithms
and heuristic techniques [10, 29, 42, 47, 53]. Rather than aiming to verify all of these different approaches in Coq, we
provide a verified translation validation function for checking the correctness of circuit mapping on particular inputs.
Unlike our verified optimizations and mapping routines, the verified translation validator may fail at runtime, indicating
a potential bug in the circuit mapper. However, if translation validation succeeds, then our proofs guarantee that
the input and output programs are mathematically equivalent up to permutation. Our translation validator works by
removing 𝑆𝑊𝐴𝑃 gates, performing a logical relabelling of qubits, and then checking for equality modulo reordering of
gates that respects gate dependencies.

This approach to equivalence checking will only work for routing routines that insert 𝑆𝑊𝐴𝑃 gates while leaving
the rest of the program’s structure unchanged (e.g., those in Qiskit and t⋃︀ket̃︀5 It will not be able to validate circuits
generated using resynthesis (e.g., using Staq’s steiner routing). However, it is possible to develop polynomial-time

5t⋃︀ket̃︀ may choose to compile a distance-2𝐶𝑋 gate to a distributed𝐶𝑋 , rather that a 𝑆𝑊𝐴𝑃 followed by a𝐶𝑋 , if the heuristics find that this improves
the final result [43, Section 7.2]. This optimization will cause our translation validator to fail; a simple fix would be to decompose 𝑆𝑊𝐴𝑃 gates before
validation and then remove select𝐶𝑋 gates from the mapped circuits. We did not implement this because it is not needed for Qiskit’s routing methods.

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 K. Hietala, R. Rand, L. Li, S. Hung, X. Wu & M. Hicks

translation validation functions for these cases too since the input and output circuits have a restricted form (e.g., Staq
performs routing for {𝐶𝑋,𝑋, 𝑅𝑧} sub-circuits, which can be easily analyzed using phase polynomials per our discussion
of rotation merging in Section 5.2).

Translation validation is popular for providing assurance for quantum compilers: Amy [1] checks for equivalence
of optimized and unoptimized programs using the path-sums semantics; PyZX [26] performs translation validation
by checking if the result of optimizing a circuit followed by its optimized adjoint produces an identity program; and
Smith and Thornton [44] provide a compiler with built-in translation validation via QMDD equivalence checking [32].
Most recently, Burgholzer et al. [6] presented a technique for equivalence checking, specialized to validating results of
the Qiskit compiler, that relies on the fact that the identity matrix (which should be the result of composing a circuit
with its optimized adjoint) can be efficiently represented using decision diagrams [7]; this observation allows them
to perform equivalence checking on circuit that use tens of thousands of operations. But none of these other tools
has been formally verified, and all aside from Burgholzer et al. [6] are more computationally heavy than our mapping
validation, which simply requires a linear scan through the input, because they aim to detect equivalence between a
more general class of programs.

6.4 Mapping with Optimization

Circuit mapping increases the size of the program, typically adding many𝐶𝑋 gates to perform 𝑆𝑊𝐴𝑃s between qubits. It
is desirable to reduce this overhead by applying optimization after mapping, but this is only worthwhile if optimization
preserves the guarantee from mapping that all 𝐶𝑋 gates are allowed by the connectivity graph. We have verified that
all the optimizations in Section 5 preserve connectivity guarantees, allowing us to apply optimization before and/or
after mapping.

We also apply some light mapping-specific optimizations. For example, after mapping we carefully decompose
𝑆𝑊𝐴𝑃 gates to enable further optimization. 𝑆𝑊𝐴𝑃 gates have two natural decompositions in terms of 𝐶𝑋 gates:
𝑆𝑊𝐴𝑃 𝑎 𝑏 = 𝐶𝑋 𝑎 𝑏; 𝐶𝑋 𝑏 𝑎; 𝐶𝑋 𝑎 𝑏 and 𝑆𝑊𝐴𝑃 𝑎 𝑏 = 𝐶𝑋 𝑏 𝑎; 𝐶𝑋 𝑎 𝑏; 𝐶𝑋 𝑏 𝑎. We choose the decomposition that
will allow𝐶𝑋 gates to be removed during gate cancellation (Section 5.1). For example, the subcircuit in Figure 12(b) and
Figure 12(c) that consists of 𝐶𝑋 followed by 𝑆𝑊𝐴𝑃 will be decomposed as shown on the left below, rather than the
right, since this will save two gates in the optimized form.

● ×

×
= ● ● ●

●
≡ ●

●

● ×

×
= ● ●

● ●

7 EXPERIMENTAL EVALUATION

The value of voqc is determined by the quality of the verified optimizations we can write with it. We can judge
optimization quality empirically by running voqc on a benchmark of circuit programs to see how well it optimizes
those programs, compared to (non-verified) state-of-the-art compilers.

To this end, in Section 7.1, we compare the performance of voqc’s verified optimizations against IBM’s Qiskit
compiler [37], CQC’s t⋃︀ket̃︀ [43], PyZX [26], and Staq [2] on a set of benchmarks developed for Staq. We find that
voqc has comparable performance to all of these: it generally beats these tools in terms of total gate count reduction,
and often matches reduction of 𝑇 gate count. In Section 7.2, we evaluate voqc’s optimization and mapping routines
by running them via a pass in the Qiskit transpiler on a set of benchmarks used to evaluate prior work on mapping
algorithms [50, 53]. Compared to Qiskit’s default settings, we find that voqc’s optimizations provide an advantage,
even for mapped circuits, and our verified translation validation does not add undue overhead. Finally, in Appendix A,
Manuscript submitted to ACM
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Table 4. Summary of optimizations used in evaluation.

qiskit-terra 0.19.1
Optimize1qGatesDecomposition ✓
CommutativeCancellation ✓∗
ConsolidateBlocks w/ UnitarySynthesis
pytket 0.19.2
RemoveRedundancies ✓
FullPeepholeOptimise
pystaq 2.1
simplify ✓
rotation_fold ✓∗
cnot_resynth
pyzx 0.7.0
full_optimize ✓∗
full_reduce

we provide a detailed comparison of the performance of voqc and Nam et al., showing that our verified implementation
is mostly faithful to its inspiration.

Note that the aim of this section is not to claim superiority over existing tools (after all, we have implemented a
subset of the optimizations available in Nam et al. [33] and Qiskit), but to demonstrate that the optimizations we have
implemented in voqc are on par with existing unverified tools.

7.1 Evaluation on Staq Benchmarks

Benchmarks. The benchmark used to evaluate Staq [2] consists of 35 programs written in the “Clifford+T” gate set
(𝐶𝑋 , 𝐻 , 𝑆 and 𝑇 , where 𝑆 and 𝑇 are 𝑧-axis rotations by 𝜋⇑2 and 𝜋⇑4, respectively). The benchmark programs contain
arithmetic circuits, implementations of multiple-control𝑋 gates, Galois field multiplier circuits, and some small quantum
algorithm components. We exclude programs with more than 104 gates, following the precedent of prior work [43,
Section 9.1.1].

We measure reduction in total gate count, two-qubit gate count, and 𝑇 -gate count (when appropriate). Total and
two-qubit gate counts are useful metrics for near-term quantum computing, where the length of the computation must
be minimized to reduce error and two-qubit gates have particularly high error rates. 𝑇 -gate count is relevant in the
fault-tolerant regime where qubits are encoded using quantum error correcting codes and operations are performed
fault-tolerantly. In this regime, the standard method for making Clifford+T circuits fault tolerant produces particularly
expensive translations for𝑇 gates, so reducing𝑇 -count is a common optimization goal. The Clifford+T set is a subset of
voqc’s RzQ gate set where each 𝑧-axis rotation is restricted to be a multiple of 𝜋⇑4.

Baselines. We first compare voqc’s performance with that of Qiskit Terra version 0.19.1 (release date December 10,
2021) and t⋃︀ket̃︀ version 0.19.2 (February 18, 2022). Both of these tools produce output using the {𝑈1,𝑈2,𝑈3,𝐶𝑋} gate
set, so we configure voqc to produce output using the IBM gate set. We then compare voqc against Staq version 2.1
(January 17, 2022) and PyZX version 0.7.0 (February 19, 2022). Since these tools produce output using the Clifford+T
gate set, we use use voqc’s RzQ gate set.

Table 4 lists the optimizations we include in our evaluation. For every tool except t⋃︀ket̃︀, we evaluate all available
(unitary) optimizations; we exclude t⋃︀ket̃︀’s OptimisePhaseGadgets and PauliSimp as they hurt improve performance on
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Reduction of: Qiskit t⋃︀ket̃︀ voqc

Total gate count 14.4% 18.5% 28.5%
Two-qubit gate count 2.3% 3.8% 9.8%

(a) IBM gate set

Reduction of: Staq PyZX voqc

Total gate count 15.4% -27.8% 23.2%
Two-qubit gate count 0.6% -91.7% 9.8%
𝑇 -gate count 45.4% 47.1% 43.1%

(b) RzQ gate set

Qiskit t⋃︀ket̃︀ Staq PyZX voqc

0.60s 1.53s 0.02s 14.58s 0.01s

(c) Running times

Fig. 14. Geometric mean gate count reductions (a,b) and running times (c) on the Staq benchmarks. The full results are in Appendix A.

our benchmarks. voqc provides the complete and verified functionality of the routines marked with✓; we write✓∗ to
indicate that voqc contains a verified optimization with similar, although not identical, behavior. voqc’s gate cancellation
routines generalize Qiskit’s Optimize1qGatesDecomposition, t⋃︀ket̃︀’s RemoveRedundancies, and Staq’s simplify; voqc’s
gate cancellation is also similar to Qiskit’s CommutativeCancellation, but Qiskit uses matrix multiplication to determine
whether gates commute while we use a rule-based approach. voqc’s rotation merging is similar to Staq’s rotation_fold
and (when combined with gate cancellation) PyZX’s full_optimize.

As far as the optimizations voqc does not support: Qiskit’s UnitarySynthesis and t⋃︀ket̃︀’s FullPeepholeOptimize
resynthesize two-qubit gate sequences (e.g., using KAK decomposition [49]), Staq’s cnot_synthesis resynthesizes
arbitrary {𝐶𝑋,𝑋, 𝑅𝑧} subcircuits (as discussed in Section 6), and PyZX’s full_reduce applies the ZX-calculus rewrite
rules described in Kissinger and van de Wetering [27].

Results. The results are summarized in Figure 14; the full results are given in Appendix A. Overall, voqc is the most
effective at reducing total and two-qubit gate count for both the IBM and RzQ gate sets, while it is slightly less effective
than Staq and PyZX at eliminating 𝑇 gates.

On all 35 programs, voqc is more effective at reducing total gate count than Qiskit. On 33/35 programs it is more
effective at reducing total gate count than t⋃︀ket̃︀. This gap in performance is primarily due to voqc’s rotation merging
optimization, which has no analogue in Qiskit or t⋃︀ket̃︀. On 9/35 programs, Qiskit, t⋃︀ket̃︀, and voqc provide no reduction
in two-qubit gate count, suggesting that these tools are not particularly effective for this type of gate. Of the remaining
23/35 programs, voqc provides a higher reduction in two-qubit gate count, despite the fact that Qiskit and t⋃︀ket̃︀ both
support two-qubit circuit resynthesis, which should give them an advantage. This suggests that small circuit resynthesis
optimizations are not particularly effective for this class of circuits.

voqc is more effective than (or equally effective as) Staq and PyZX at reducing total gate count on 29/35 programs. On
4/35 programs, Staq is the most effective, and on the remaining 2/35 PyZX performs best. However, on 26/35 programs
PyZX actually increases the total gate count.6 The reason for this is that PyZX converts a circuit to a ZX-diagram,
performs optimization, and then converts back; this conversion process can introduce many additional gates. However,
PyZX is the best overall at reducing 𝑇 -gate count. On 28/35 programs, PyZX is more effective than (or equally effective
as) Staq and voqc at reducing 𝑇 -gate count. On 7/35 programs, Staq performs best. Surprisingly, on 13/35 benchmarks,
all optimizers produce the same 𝑇 -count. This is unexpected since, although all these optimizers rely on some form of

6To account for this, when computing the “geometric mean reduction” for each type of gate, we actually compute the geometric mean proportion of the
final to original gate count, which is a strictly positive number. We then subtract this number from 1, which produces a negative value in cases where
gate count increased on average.
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rotation merging, their implementations differ substantially. Kissinger and van de Wetering [27] posit that this indicates
a local optimum in the ancilla-free case for some of the benchmarks (in particular the tof benchmarks, whose 𝑇 -count
is not reduced by applying additional techniques [17]). As with the IBM gate set experiments, voqc is not particularly
effective at reducing two-qubit gate count. However, unlike PyZX and Staq, it never increases the number of two-qubit
gates, which leads to significantly better performance overall.

To compare the running times of the different tools, we ran 11 trials of voqc, Qiskit, t⋃︀ket̃︀, Staq, and PyZX (taking
the median time for each benchmark) on a standard laptop with a 2.9 GHz Intel Core i5 processor and 16 GB of 1867
MHz DDR3 memory, running macOS Monterey. We then took the geometric mean over the median runtimes. Qiskit,
Staq, and voqc all have mean runtimes of under one second. t⋃︀ket̃︀ is slightly slower, but the mean is still under two
seconds. PyZX was consistently the slowest; the full_optimize routine in particular scaled poorly with increasing qubit
and gate counts. We set a time limit of 10 minutes for each run of PyZX, defaulting to applying full_reduce (but not
full_optimize) in case of a timeout. In the case of a timeout, we consider only the time required to run full_reduce.
In addition, full_optimize is not deterministic, and may produce different output circuits for different runs. The gate
counts we report are from the trial that produced the lowest 𝑇 -gate count.

Overall, these results are encouraging evidence that voqc supports useful and interesting verified optimizations.
Furthermore, despite having been written with verification in mind, voqc’s running times are not significantly worse
than (and often better than) that of current tools.

7.2 Evaluation of Mapping Validation

Benchmarks. To evaluate voqc’s support for circuit mapping, we used the test suite from the MQT quantum circuit
mapping tool [9], subsets of which have been used in the evaluations of Zulehner et al. [53] and Wille et al. [50]. The
benchmark programs all use at most 16 qubits, and, like before, we include only those circuits with less than 104 gates.
The circuits are primarily taken from the RevLib [51] suite of classical reversible circuits, but the benchmark also
includes some truly quantum circuits including quantum Fourier transforms and circuits for quantum chemistry. In
total, we consider 126 circuit programs.

Baselines. We developed a custom pass for the Qiskit compiler that applies the following sequence of transformations:
voqc optimization (using the RzQ gate set), Qiskit circuit mapping, voqc mapping validation, and voqc optimization
(using the IBM gate set). Our verified translation validation allows us to use the sophisticated mapping routines available
in Qiskit without sacrificing soundness. We can run voqc optimizations both before and after mapping because we
have proved that our optimizations preserve mapping guarantees.

We compare our pass against the default Qiskit pass with optimization level 3, which applies mapping followed by
optimization. For both passes, we use Qiskit’s default layout and routing routines which are based on Li et al. [29].
This routing algorithm is non-deterministic, so we run multiple (11) trials, storing the result of the run that produced
the circuit with the lowest total gate count. We additionally compare against an OCaml program that applies voqc
optimization (using the RzQ gate set), greedy layout and swap routing (Section 6), and optimization (using the IBM gate
set). We record change in total gate count and two-qubit gate count. Note that unlike Section 7.1, where we expected
gate count reduction, for this experiment we expect gate count to increase since mapping introduces many additional
𝐶𝑋 gates, some of which will be removed by optimization. All circuits are mapped to a 16-qubit ring architecture
(Figure 13(b)). Like before, we use Qiskit Terra version 0.19.1 and run on a standard laptop with a 2.9 GHz Intel Core i5
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Table 5. Geometric mean gate count increases and running times for the mapping experiment over all 126 benchmark circuits.

Qiskit voqc Qiskit+voqc

Total gate count increase 80.9% 73.9% 38.9%
Two-qubit gate count increase 113.5% 204.1% 126.0%
Running time 1.07s <0.01s 1.01s

processor and 16 GB of 1867 MHz DDR3 memory, running macOS Monterey. When recording timing data, we take the
median running time over 11 trials.

Results. The results are summarized in Table 5. The first column shows the result of the Qiskit default pass, the
second column shows the result of the voqc OCaml program, and the last column shows the result of the voqc pass
within Qiskit. Compared to the Python-based Qiskit passes, the OCaml program is significantly faster; however, it
also introduces the most two-qubit gates due to its simple 𝑆𝑊𝐴𝑃-insertion strategy. Despite this, the OCaml program
results in a lower total gate count overhead than Qiskit—this can be explained by voqc’s superior optimizations, as
per Section 7.1. Overall, Qiskit’s default pass provides the lowest overhead in two-qubit gate count. This is due to
Qiskit’s two-qubit circuit resynthesis optimization, which is especially effective at reducing two-qubit gate count
post-mapping. The Qiskit+voqc pass has the best performance overall: it has running time and two-qubit gate count
overhead comparable with Qiskit, but provides a much lower total gate count overhead and proven guarantees that the
output circuit is semantically equivalent to the input. During our trials, we found that translation validation accounted
for <1% of the Qiskit+voqc pass running time and we never encountered a validation failure, which means that Qiskit’s
mapping routines assuredly preserved the semantics of the programs we tested (although this says nothing about
semantics-preservation of Qiskit’s optimizations).

8 RELATEDWORK

In addition to the compilers Qiskit, t⋃︀ket̃︀, Staq, PyZX, and Nam et al. (discussed in Section 7), other recent efforts include
quilc [41], Cirq [13], ScaffCC [25], and Project Q [46]. Due to resource limits on near-term quantum computers, most
compilers for quantum programs contain some degree of optimization, and nearly all place an emphasis on satisfying
architectural requirements, like mapping to a particular gate set or qubit topology. None of the optimization or mapping
code in these compilers is formally verified.

Previously, formal verification has been applied to parts of the quantum compiler stack, but has not supported general
quantum programs. Amy et al. [4] and Rand et al. [39] developed certified compilers from source Boolean expressions to
reversible circuits. Fagan and Duncan [15] verified an optimizer for ZX diagrams representing Clifford circuits (which
use the non-universal gate set {𝐶𝑋,𝐻, 𝑆}). Work on translation validation [6, 26, 44] (discussed in Section 6.3) supports
general quantum programs, but adds compile-time overhead and allows for the possibility of compile-time failure due
to input/output inequivalence.

Tao et al. [48] developed Giallar, a verification toolkit used to verify transformations in the Qiskit compiler. Their
approach has two steps. First, like voqc, they use Coq to prove that a circuit equivalence is valid. Second, they use
symbolic execution to generate verification conditions for parts of the program that manipulate circuits. These are
given to an SMT solver to verify that pattern equivalences are applied correctly according to programmer-provided
function specifications and invariants. Compared to voqc, Giallar is easier for non-experts to use to develop verified
software, and simpler to integrate into existing workflows. However, more complex optimizations like rotation merging
Manuscript submitted to ACM
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(which provides a significant benefit over the optimizations in Qiskit, per Section 7) cannot be implemented by applying
small local rewrites. Giallar may also fail to prove an optimization correct, e.g., because of complicated control code. We
have tried to alleviate proof burden in voqc by providing a library of verified functions and optimization “templates”
(Section 4.1). In particular, the optimizations implemented in Giallar could be implemented using our propagate-cancel
template.

Finally, Xu et al. [52] presented Quartz, a superoptimizer for quantum circuits with SMT-based verification of circuit
equivalences. Quartz begins by applying (unverified implementations of) Toffoli decomposition and rotation merging,
as described in Nam et al. [33]. Similar to our results, they find that these passes are a significant source of gate count
reduction. After that, having generated a complete set of small (verified) circuit rewrite rules, they use (unverified)
cost-based backtracking search to find the optimal sequence of rewrites. This is in contrast to voqc, which applies only
the fixed set of rules described in Section 5. Excitingly, this leads to higher gate count reduction than voqc [52, Section
7], but it does so at a higher cost: their experiments are run on a 128-core CPU with 512GB RAM, with a search timeout
of 24 hours (compared to voqc, which typically has a running time of under a second on a standard 2015 laptop). It
would be interesting to analyze the results of Quartz’s optimization to see which rewrite rules are most often triggered
and implement and verify these inside of voqc, improving voqc’s gate count reduction while avoiding the expense of
backtracking search.

9 CONCLUSIONS AND FUTUREWORK

This paper has presented voqc, the first fully verified optimizer for quantum circuits. A key component of voqc is
sqir, a simple, low-level quantum language deeply embedded in the the Coq proof assistant, which gives a semantics to
quantum programs that is amenable to proof. Optimization passes are expressed as Coq functions which are proved to
preserve the semantics of their input sqir programs. voqc’s optimizations are mostly based on local circuit equivalences,
implemented by replacing one pattern of gates with another, or commuting a gate rightward until it can be cancelled.
Others, like rotation merging, are more complex. These were inspired by, and in some cases generalize, optimizations in
industrial compilers, but in voqc are proved correct. When applied to a benchmark suite of 35 circuit programs, we
found voqc performed comparably to state-of-the-art compilers, reducing gate count on average by 28.5% compared
to 14.4% for IBM’s Qiskit compiler [37], and 18.5% for CQC’s t⋃︀ket̃︀ [43]. On the same benchmarks, voqc reduced
𝑇 -gate count on average by 43.1% compared to 45.4% by Amy and Gheorghiu [2] and 47.1% by the PyZX optimizer [26],
although voqc outperforms both in terms of total gate count reduction.

We are confident that additional circuit-level optimizations and mapping routines can be implemented and verified
within the voqc framework. Some interesting problems not solved by sqir and voqc include verified compilation from
high-level languages (e.g., Silq [5]) to sqir circuits, and verified optimizations that operate on high-level programs (e.g.,
Li et al. [30] and Ittah et al. [24]). We have started work in this direction with VQO [31], a verified compiler from a
high-level classical language to sqir circuits, but there is still much to be done to support verified optimized compilation
of general-purpose high-level quantum languages.
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Table 6. Summary of optimizations available in Nam et al..

Nam et al.
Not propagation (P) ✓∗
Hadamard gate reduction (L, H) ✓
Single-qubit gate cancellation (L, H) ✓
Two-qubit gate cancellation (L, H) ✓
Rotation merging using phase polynomials (L) ✓∗
Floating 𝑅𝑧 gates (H)
Special-purpose optimizations (L, H)

• LCR optimizer ✓
• Toffoli decomposition

A ADDITIONAL BENCHMARK RESULTS

This section contains the full results of the experiments described in Section 7.

A.1 Staq Benchmarks

Section 7 summarized the results of running Qiskit [37], t⋃︀ket̃︀ [43], PyZX [26], and Staq [2] on 35 circuit programs
used to evaluate Staq. Tables 7 to 9 show the full results. In each row, for each type of gate, we shade the cell of the
best-performing optimizer. The geometric mean reduction for each gate type is given in the last row. Cases where PyZX
hit our timeout (so we ran full_reduce, but not full_optimize) are marked with stars.

A.2 Nam et al. Benchmarks

In this section, we evaluate voqc’s performance on all 99 benchmark programs considered by Nam et al. [33], confirming
that voqc is a faithful implementation of a subset of the optimizations present in Nam et al. (along with being proved
correct!). The benchmarks are divided into three categories, as described below. Our versions of the benchmarks are
available online.7 All results were obtained using a laptop with a 2.9 GHz Intel Core i5 processor and 16 GB of 1867 MHz
DDR3 memory, running macOS Catalina. For timings, we take the median of three trials. We do not re-run Nam et al.
(which is proprietary software), but instead report the results from Nam et al. [33]; they are from a similar machine
with 8 GB RAM running OS X El Capitan. Their implementation is written in Fortran.

We summarize the optimizations available in Nam et al. in Table 6. P stands for “preprocessing” and L and H indicate
whether the routine is in the “light” or “heavy” versions of the optimizer. voqc provides the complete and verified
functionality of the routines marked with✓; we write✓∗ to indicate that voqc contains a verified optimization with
similar, although not identical, behavior. We have not yet implemented “Toffoli decomposition” and “Floating 𝑅𝑧 gates”
and compared to Nam et al.’s rotation merging, voqc performs a slightly less powerful optimization (as discussed in
Section 5.2).

In cases where Toffoli decomposition and heavy optimization are not used (the QFT, QFT-based adder, and product
formula circuits), voqc’s results are identical to Nam et al.’s. In the other cases, voqc is slightly less effective. In the
worst case, voqc’s running time is four orders of magnitude worse than Nam et al.’s. However, voqc’s running time is
often less than a second. We view this performance as acceptable, given that benchmarks with more than 1000 two-qubit

7https://github.com/inQWIRE/VOQC-benchmarks

Manuscript submitted to ACM

https://github.com/inQWIRE/VOQC-benchmarks


1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

A2 K. Hietala, R. Rand, L. Li, S. Hung, X. Wu & M. Hicks

gates (the only programs for which voqc optimization takes longer than one second) are well out of reach of current
quantum hardware [35]. We are optimistic that voqc’s performance can be improved through more careful engineering.

Arithmetic and Toffoli. These benchmarks overlap with the Staq benchmarks discussed in Section 7 (both originate
from an earlier paper by Amy et al. [3]). The programs range from 45 to 346,533 gates and 5 to 489 qubits. The total gate
count reduction and timing results for all 32 benchmarks are given in Table 10. In 12 out of 32 cases voqc outperforms
Nam et al., but voqc has a lower average reduction. This is primarily due to Nam et al.’s “special-purpose Toffoli
decomposition,” which affects how 𝐶𝐶𝑋 gates are decomposed. Their decomposition enables rotation merging and
single-qubit gate cancellation to cancel two gates (e.g. cancel 𝑇 and 𝑇†) where we instead combine two gates into one
(e.g. 𝑇 and 𝑇 becomes 𝑆). Interestingly, the cases where voqc outperforms Nam et al. can also be attributed to their
Toffoli decomposition heuristic, which sometimes result in fewer cancellations than the naïve decomposition that we
use. We do not expect adding and verifying this form of Toffoli decomposition to pose a challenge in voqc. Reduction
in 𝑇 -gate count is not shown, but voqc matches Nam et al. (both L and H) on all benchmarks but two. The first case
(qcla_adder_10) is due to our simplification in rotation merging. In the second case (qcla_mod_7), Nam et al.’s optimized
circuit was later found to be inequivalent to the original circuit [27, Section 2] (as marked by the red in Table 10), so the
lower 𝑇 -count is spurious.

QFT and Adders. These benchmarks consist of components of Shor’s integer factoring algorithm, in particular the
quantum Fourier transform (QFT) and integer adders. Two types of adders are considered: an in-place modulo 2𝑞 adder
implemented in the Quipper library and an in-place adder based on the QFT. These benchmarks range from 148 to
381,806 gates and 8 to 4096 qubits. Results on all 27 benchmarks are given in Table 11, Table 12, and Table 13. The
Quipper adder programs use similar gates to the arithmetic and Toffoli circuits, so the results are similar—voqc is
close to Nam et al., but under-performs due to our simplified Toffoli decomposition. The QFT circuits use rotations
parameterized by 𝜋⇑2𝑛 for varying 𝑛 ∈ N (and no Toffoli gates) so voqc’s results are identical to Nam et al.’s. For
consistency with Nam et al., on the QFT and QFT-based adder circuits we run a simplified version of our optimizer that
does not include rotation merging.

Product Formula. These benchmarks implement product formula algorithms for simulating Hamiltonian dynamics.
The benchmarks range from 260 to 127,500 gates and 10 to 100 qubits; they use rotations parameterized by floating
point numbers, which we convert to OCaml rationals at parse time. The product formula circuits are intended to be
repeated for a fixed number of iterations, and our resource estimates account for this. voqc applies Nam et al.’s “LCR”
optimization routine to optimize programs across loop iterations. On all 40 product formula benchmarks, our results
are the same as those reported by Nam et al. [33, Table 3]. 𝐻 gate reductions range from 62.5% to 75%. Reductions in
Clifford 𝑧-axis rotations (i.e. rotations by multiples of 𝜋⇑2) range from 75% to 87.5% while reductions in non-Clifford
𝑧-axis rotations range from 0% to 28.6%. 𝐶𝑋 gate reductions range from 0% to 33%. Running times range from 0.01s to
406.93s. By comparison, Nam et al.’s running times range from 0.004s to 0.137s.
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Table 7. Reduced gate counts for the IBM gate set on the Staq [2] benchmarks. Shaded cells mark the best performance.

Total Gate Count 2-qubit Gate Count

Name Original Qiskit t⋃︀ket̃︀ voqc Original Qiskit t⋃︀ket̃︀ voqc

adder_8 934 820 806 643 409 385 383 337
barenco_tof_3 60 53 52 46 24 24 24 22
barenco_tof_4 120 104 100 89 48 48 46 44
barenco_tof_5 180 155 148 132 72 72 68 66
barenco_tof_10 480 410 388 347 192 192 178 176
csla_mux_3 170 154 141 146 80 69 69 72
csum_mux_9 448 403 366 308 168 168 168 168
cycle_17_3 9738 8397 7753 5963 3915 3903 3723 3001
gf2^4_mult 243 206 206 190 99 99 99 99
gf2^5_mult 379 318 319 289 154 154 154 154
gf2^6_mult 545 454 454 408 221 221 221 221
gf2^7_mult 741 614 614 547 300 300 300 300
gf2^8_mult 981 804 806 703 405 405 402 405
gf2^9_mult 1223 1006 1009 882 494 494 494 494
gf2^10_mult 1509 1238 1240 1080 609 609 609 609
gf2^16_mult 3885 3148 3150 2691 1581 1581 1581 1581
grover_5 831 669 605 526 288 288 288 248
ham15-low 443 406 390 351 236 236 226 220
ham15-med 1272 1105 1015 820 534 533 498 434
ham15-high 5308 4589 4371 3532 2149 2143 2110 1853

hwb6 257 236 223 205 116 115 111 108
mod_adder_1024 4285 3721 3542 2832 1720 1702 1702 1402
mod_mult_55 119 110 100 83 48 48 48 40
mod_red_21 272 237 226 191 105 105 105 93
mod5_4 65 56 56 53 28 28 28 28

qcla_adder_10 539 477 441 408 233 213 213 207
qcla_com_7 463 407 363 292 186 174 174 148
qcla_mod_7 920 813 752 666 382 366 366 338

qft_4 179 97 81 94 46 44 38 46
rc_adder_6 200 177 159 141 93 81 81 73

tof_3 45 41 40 36 18 18 18 16
tof_4 75 68 66 58 30 30 30 26
tof_5 105 95 92 80 42 42 42 36
tof_10 255 230 222 190 102 102 102 86

vbe_adder_3 160 133 121 100 70 58 58 54
Geo. Mean Red. – 14.4% 18.5% 28.5% – 2.3% 3.8% 9.8%
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Table 8. Reduced gate counts for the RzQ gate set on the Staq [2] benchmarks. Shaded cells mark the best performance. PyZX often

increases both total and two-qubit gate count (hence the negative reduction for both). Some PyZX results are marked with a star
∗
to

indicate that full_optimize exceeded our time limit, so we only used full_reduce.

Total Gate Count 𝑇 Gate Count 2-qubit Gate Count

Name Original Staq PyZX voqc Original Staq PyZX voqc Original Staq PyZX voqc

adder_8 934 756 911 682 399 179 167 215 409 382 609 337
barenco_tof_3 60 48 53 50 28 16 16 16 24 20 28 22
barenco_tof_4 120 90 88 95 56 28 28 28 48 38 44 44
barenco_tof_5 180 132 184 140 84 40 40 40 72 56 116 66
barenco_tof_10 480 342 460 365 224 100 100 100 192 146 299 176
csla_mux_3 170 174 291 156 70 62 47 64 80 88 201 72
csum_mux_9 448 294 508 308 196 84 76 84 168 126 371 168
cycle_17_3 9738 7143 11157∗ 6314 4529 1821 1821∗ 1821 3915 3351 6229∗ 3001
gf2^4_mult 243 242 277 192 112 66 50 68 99 141 211 99
gf2^5_mult 379 366 650 291 175 113 92 115 154 209 526 154
gf2^6_mult 545 540 1309∗ 410 252 148 150∗ 150 221 327 789∗ 221
gf2^7_mult 741 714 1843∗ 549 343 215 217∗ 217 300 423 1162∗ 300
gf2^8_mult 981 968 2610∗ 705 448 262 264∗ 264 405 603 1745∗ 405
gf2^9_mult 1223 1178 3162∗ 885 567 348 351∗ 351 494 713 2065∗ 494
gf2^10_mult 1509 1484 4118∗ 1084 700 406 410∗ 410 609 927 2779∗ 609
gf2^16_mult 3885 3800 11627∗ 2695 1792 1032 1040∗ 1040 1581 2427 8368∗ 1581
grover_5 831 678 696 586 336 166 166 172 288 263 395 248
ham15-low 443 417 650 373 161 97 97 97 236 252 477 220
ham15-med 1272 989 1205 880 574 242 211 248 534 483 821 434
ham15-high 5308 3967 5084∗ 3739 2457 1021 1019∗ 1049 2149 1870 2343∗ 1853

hwb6 257 237 274 221 105 75 74 75 116 115 163 108
mod_adder_1024 4285 3401 5572∗ 3039 1995 1011 1011∗ 1011 1720 1584 2813∗ 1402
mod_mult_55 119 107 123 90 49 37 28 35 48 42 82 40
mod_red_21 272 235 340 214 119 73 72 73 105 94 211 93
mod5_4 65 53 27 56 28 8 8 16 28 28 14 28

qcla_adder_10 539 445 894∗ 438 238 162 162∗ 164 233 209 382∗ 207
qcla_com_7 463 329 473 314 203 95 92 95 186 146 312 148
qcla_mod_7 920 725 1426 723 413 237 226 249 382 334 1012 338

qft_4 179 170 191 156 91 50 66 67 46 56 72 46
rc_adder_6 200 173 256 157 77 47 47 47 93 81 162 73

tof_3 45 40 55 40 21 15 15 15 18 16 31 16
tof_4 75 65 83 65 35 23 23 23 30 26 48 26
tof_5 105 90 121 90 49 31 31 31 42 36 68 36
tof_10 255 215 338 215 119 71 71 71 102 86 213 86

vbe_adder_3 160 101 155 101 70 24 24 24 70 54 105 54
Geo. Mean Red. – 15.4% -27.8% 23.2% – 45.4% 47.1% 43.1% – 0.6% -91.7% 9.8%
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Table 9. Median running times (in seconds) on Staq benchmarks.

Name # qubits # gates Qiskit t⋃︀ket̃︀ Staq PyZX voqc

adder_8 24 934 1.43 4.47 0.07 19.16 0.05
barenco_tof_3 5 60 0.09 0.18 <0.01 2.24 <0.01
barenco_tof_4 7 120 0.17 0.38 <0.01 2.54 <0.01
barenco_tof_5 9 180 0.26 0.58 <0.01 0.58 <0.01
barenco_tof_10 19 480 0.63 1.49 0.02 63.04 0.02
csla_mux_3 15 170 0.29 0.75 0.01 72.74 <0.01
csum_mux_9 30 448 0.58 1.52 0.02 45.87 0.01
cycle_17_3 35 9738 13.08 41.56 1.63 498.51∗ 5.74
gf2^4_mult 12 243 0.32 1.04 0.01 57.25 0.01
gf2^5_mult 15 379 0.50 1.65 0.02 0.23 0.01
gf2^6_mult 18 545 0.70 2.22 0.04 0.43∗ 0.02
gf2^7_mult 21 741 1.13 3.03 0.08 0.73∗ 0.04
gf2^8_mult 24 981 1.28 4.16 0.14 1.48∗ 0.07
gf2^9_mult 27 1223 1.62 5.04 0.22 1.94∗ 0.11
gf2^10_mult 30 1509 2.09 6.22 0.35 2.95∗ 0.17
gf2^16_mult 48 3885 5.28 17.37 3.30 25.41∗ 1.24
grover_5 9 831 1.01 2.37 0.03 34.30 0.01
ham15-low 17 443 0.67 2.69 0.02 119.85 0.01
ham15-med 17 1272 1.88 4.53 0.07 261.71 0.05
ham15-high 20 5308 7.53 20.59 0.33 23.31∗ 0.66

hwb6 7 257 0.38 1.04 0.01 58.54 <0.01
mod_adder_1024 28 4285 5.95 15.56 0.37 171.43∗ 1.31
mod_mult_55 9 119 0.18 0.47 <0.01 5.62 <0.01
mod_red_21 11 272 0.37 0.90 0.01 54.76 0.01
mod5_4 5 65 0.10 0.18 <0.01 2.17 <0.01

qcla_adder_10 36 539 0.80 1.97 0.04 1.86∗ 0.02
qcla_com_7 24 463 0.65 1.50 0.02 79.69 0.01
qcla_mod_7 26 920 1.42 3.33 0.08 411.36 0.06

qft_4 5 179 0.19 0.30 <0.01 14.83 <0.01
rc_adder_6 14 200 0.31 0.92 0.01 14.38 <0.01

tof_3 5 45 0.07 0.15 <0.01 8.68 <0.01
tof_4 7 75 0.11 0.24 <0.01 13.22 <0.01
tof_5 9 105 0.15 0.33 <0.01 25.43 <0.01
tof_10 19 255 0.35 0.81 0.01 75.79 0.01

vbe_adder_3 10 160 0.24 0.51 <0.01 19.21 <0.01
Geo. Mean – – 0.60 1.53 0.02 14.58 0.01
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Table 10. Total gate count reduction on the “Arithmetic and Toffoli” circuits. Nam (H) results were not available for the large

benchmarks. Red cells indicate programs optimized incorrectly. Bold results mark the best performance.

Orig. Nam (L) Nam (H) voqc

Name Total Total t (s) Total t (s) Total t (s)

adder_8 900 646 0.004 606 0.101 682 0.048
barenco_tof_3 58 42 <0.001 40 0.001 50 0.001
barenco_tof_4 114 78 <0.001 72 0.001 95 0.002
barenco_tof_5 170 114 <0.001 104 0.003 140 0.003
barenco_tof_10 450 294 0.001 264 0.012 365 0.019
csla_mux_3 170 161 <0.001 155 0.009 158 0.003
csum_mux_9 420 294 <0.001 266 0.009 308 0.006
gf2^4_mult 225 187 0.001 187 0.009 192 0.006
gf2^5_mult 347 296 0.001 296 0.020 291 0.012
gf2^6_mult 495 403 0.003 403 0.047 410 0.025
gf2^7_mult 669 555 0.004 555 0.105 549 0.045
gf2^8_mult 883 712 0.006 712 0.192 705 0.070
gf2^9_mult 1095 891 0.010 891 0.347 885 0.119
gf2^10_mult 1347 1070 0.009 1070 0.429 1084 0.183
gf2^16_mult 3435 2707 0.065 2707 5.566 2695 1.347
gf2^32_mult 13593 10601 1.834 10601 275.698 10577 26.808
gf2^64_mult 53691 41563 58.341 – – 41515 546.887
gf2^128_mult 213883 165051 1744.746 – – 164955 9841.797
gf2^131_mult 224265 173370 1953.353 – – 173273 10877.112
gf2^163_mult 346533 267558 4955.927 – – 267437 27612.565

mod5_4 63 51 <0.001 51 0.001 56 <0.001
mod_mult_55 119 91 <0.001 91 0.002 90 0.002
mod_red_21 278 184 <0.001 180 0.008 214 0.005
qcla_adder_10 521 411 0.002 399 0.044 438 0.018
qcla_com_7 443 284 0.001 284 0.016 314 0.013
qcla_mod_7 884 636 0.004 624 0.077 723 0.058
rc_adder_6 200 142 <0.001 140 0.004 157 0.003

tof_3 45 35 <0.001 35 <0.001 40 <0.001
tof_4 75 55 <0.001 55 <0.001 65 0.001
tof_5 105 75 <0.001 75 0.001 90 0.002
tof_10 255 175 <0.001 175 0.004 215 0.006

vbe_adder_3 150 89 <0.001 89 0.001 101 0.002
Geo. Mean Red. – 24.6% 26.4% 19.2%
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Table 11. Total gate count reduction on Quipper adder circuits. voqc’s 𝐻 and𝑇 counts are identical to Nam (L) and (H), but the total

𝑅𝑧 and𝐶𝑋 counts are higher due to Nam et al.’s specialized Toffoli decomposition. The difference between Nam (L) and Nam (H)

is entirely due to𝐶𝑋 count. Our initial gate counts are higher than those reported by Nam et al. because we do not have special

handling for +/- control Toffoli gates; we simply consider the standard Toffoli gate conjugated by additional 𝑋 gates.

Original Nam (L) Nam (H) voqc

n Total Total t (s) Total t (s) Total t (s)

8 585 239 0.001 190 0.006 352 0.02
16 1321 527 0.003 414 0.018 784 0.12
32 2793 1103 0.014 862 0.066 1648 0.63
64 5737 2255 0.057 1758 0.598 3376 3.30
128 11625 4559 0.244 3550 4.697 6832 16.37
256 23401 9167 1.099 7134 34.431 13744 79.74
512 46953 18383 5.292 14302 307.141 27568 394.74
1024 94057 36815 25.987 28638 2446.336 55216 1894.41
2048 188265 73679 145.972 57310 23886.841 110512 9307.36

Avg. Red. – 63.7% 71.6% 45.7%

Table 12. Results on QFT circuits. Exact timings and gate counts are not available for Nam (L) or Nam (H), but our gate counts are

consistent with those reported in Nam et al. [33, Figure 1].

Original voqc

n 𝐶𝑋 𝑅𝑧 𝐻 𝐶𝑋 𝑅𝑧 𝐻 t (s)

8 56 84 8 56 42 8 <0.01
16 228 342 16 228 144 16 <0.01
32 612 918 32 612 368 32 0.01
64 1380 2070 64 1380 816 64 0.07
128 2916 4374 128 2916 1712 128 0.39
256 5988 8982 256 5988 3504 256 2.34
512 12132 18198 512 12132 7088 512 15.69
1024 24420 36630 1024 24420 14256 1024 106.71
2048 48996 73494 2048 48996 28592 2048 674.11

Avg. Red. – – – 0% 59.3% 0%

Table 13. Results on QFT-based adder circuits. Final gate counts are identical for voqc and Nam (L).

Original voqc Nam (L)

n 𝐶𝑋 𝑅𝑧 𝐻 𝐶𝑋 𝑅𝑧 𝐻 t (s) t (s)

8 184 276 16 184 122 16 <0.01 <0.001
16 716 1074 32 716 420 32 0.02 0.001
32 1900 2850 64 1900 1076 64 0.13 0.002
64 4268 6402 128 4268 2388 128 0.90 0.004
128 9004 13506 256 9004 5012 256 5.52 0.08
256 18476 27714 512 18476 10260 512 36.80 0.018
512 37420 56130 1024 37420 20756 1024 255.20 0.045
1024 75308 112962 2048 75308 41748 2048 1695.65 0.115
2048 151084 226626 4096 151084 83732 4096 8481.66 0.215

Avg. Red. – – – 0% 61.8% 0%
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