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In this extended abstract we present ongoing work on implementing a quantum separation logic in F★ and
discuss our prototype implementation of a proof of correctness for teleport with entanglement.

1 OVERVIEW
Recent work [Le et al. 2022; Zhou et al. 2021] has shown that separation logic, used to reason about
pointer-manipulating classical programs, is applicable in the domain of quantum computation.
Here, the separating conjunction ★, traditionally used to describe disjoint portions of the classical
heap, describes separability of quantum states. A quantum state is separable when it can be written
as the tensor product of two smaller states, i.e., 𝜓 = 𝜓1 ⊗ 𝜓2.1 This is in contrast to an entangled
state, which cannot be similarly decomposed. When two quantum bits (qubits) are in an entangled
state, operations on one qubit may affect the other; so despite the two objects being physically
distinct, they must be reasoned about together. On the other hand, if two qubits are in a separable
state, then they can be reasoned about independently, allowing for modularity in proofs.
The two current proposals for quantum separation logics [Le et al. 2022; Zhou et al. 2021] do

not come equipped with implementations. We are working to rectify this by building a quantum
separation logic on top of Steel [Fromherz et al. 2021], a language for developing and verifying
concurrent programs embedded in F★. F★ is a general-purpose functional programming language
with effects and a dependent type system enabling program verification. Its type-checker proves
that programs meet their specifications (i.e., satisfy their types) using a combination of SMT solving
and interactive proof. After verification, F★ programs can be extracted to OCaml, F#, or C. The F★
language has been used to certify key internet security protocols, including Transport Layer Security
(TLS) [Bhargavan et al. 2017], and produce high-performance cryptographic libraries [Zinzindohoué
et al. 2017]. Steel has been used to implement and verify mutable AVL trees, a lock-free version of
parallel increment, concurrent queues, and a library for message-passing concurrency.2
In order to describe our quantum separation logic, we instantiate Steel’s separation logic with

a model of quantum state based on a partial commutative monoid whose carrier is a vector of
complex numbers and whose operation is the tensor product on vectors. This construction allows
us to use the separating conjunction ★ to assert properties about separable states, and further, to
define actions on quantum states with separation logic specifications. We refer to the extension of
F★ with quantum actions as Q★.

An action’s type stores its return value and pre- and postconditions. We provide the actions listed
in Figure 1; return values are shown on the left of the left arrow (←) and pre- and postconditions
are marked in blue. alloc allocates a fresh qubit and returns a reference, discard deallocates a qubit,
measuremeasures a qubit and returns the result, and apply applies a quantum gate. There are two
points to note: (i) discard requires that its input qubit is not entangled with any other qubits, and
(ii) the postcondition of measure does not associate output 𝑏 with a particular probability. Instead,
measure 𝑞 chooses a value 𝑏 (using an external source of randomness) such that the projection

1𝜓1 and𝜓2 are defined over disjoint sets of qubits so tensor is commutative, i.e.,𝜓1 ⊗𝜓2 = 𝜓2 ⊗𝜓1.
2We could reuse these Steel libraries to develop verified hybrid classical/quantum concurrent programs—but we don’t
currently have a target application in mind. We welcome suggestions from reviewers or audience members during the talk.
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{ emp } 𝑞 ← alloc { 𝑞 ↦→ |0⟩ }
{ 𝑞 ↦→ |𝜓 ⟩ } discard 𝑞 { emp }

{ 𝑞 ∪ 𝑞 ↦→ |𝜓 ⟩ } 𝑏 ← measure 𝑞 { 𝑞 ↦→ |𝑏⟩ ★𝑞 ↦→ proj(𝑞,𝑏, |𝜓 ⟩) }
{ 𝑞 ↦→ |𝜓 ⟩ } apply U 𝑞 { 𝑞 ↦→ 𝑈 |𝜓 ⟩ }

Fig. 1. Pre- and postconditions of Q★ actions.

onto the state where 𝑞 is in state |𝑏⟩ is nonzero. In the postcondition, proj(𝑞,𝑏, |𝜓 ⟩) projects out
the qubit 𝑞, assuming it is in state |𝑏⟩.
The key predicate for reasoning about Q★ programs is the “points-to” relation 𝑞 ↦→ |𝜓 ⟩, which

says that the set of qubits 𝑞 are in the state |𝜓 ⟩. In the case where 𝑞 is empty, we write emp. We
adopt the separating conjunction★ from separation logic [Reynolds 2002]; 𝑃1 ★𝑃2 says that we can
partition the global quantum state Ψ to produce Ψ1 and Ψ2 so that 𝑃1 holds of Ψ1, 𝑃2 holds of Ψ2,
and Ψ = Ψ1 ⊗ Ψ2. ★ is commutative and 𝑃 ★ emp = 𝑃 . The predicate 𝑞 ↦→ |𝜓 ⟩ implies that qubits in
𝑞 are not entangled with qubits in the rest of the program; if they were entangled with some other
qubit 𝑞′ ∉ 𝑞, then we would need to write 𝑞′ ∪ 𝑞 ↦→ |𝜙⟩ for some |𝜙⟩.

When using the separating conjunction ★, a key inference rule is the frame rule, which says that
if we have a proof that program 𝑐 takes predicate 𝑃 to𝑄 (i.e., { 𝑃 } 𝑐 { 𝑄 }), then we can derive that it
takes 𝑃 ★𝑅 to𝑄 ★𝑅 ({ 𝑃 ★𝑅 } 𝑐 { 𝑄 ★𝑅 }), assuming no variable occurring free in 𝑅 is modified by 𝑐 .
This allows us to extend a local specification (like 𝑃 ,𝑄) to a global one (𝑃★𝑅,𝑄★𝑅). As an example,
say that we have a program that applies a Hadamard 𝐻 gate to qubit 𝑞 and we know that 𝑞 is
initially in state |𝜓 ⟩ (i.e., 𝑞 ↦→ |𝜓 ⟩). After the program executes, we will have that 𝑞 ↦→ 𝐻 |𝜓 ⟩. Using
the frame rule, we can extend this specification to a larger program that also includes qubit 𝑞′: Say
that initially 𝑞′ ↦→ |𝜙⟩, then after the program executes, we can conclude that 𝑞′ ↦→ |𝜙⟩★𝑞 ↦→ 𝐻 |𝜓 ⟩.
In other words, the program acting on 𝑞 has no effect on 𝑞′.
In addition to applying the frame rule, we may also need to manually manipulate the matrix

expressions inside predicates and selectively apply the following entailment rule:

𝑞1 ∪ 𝑞2 ↦→ |𝜓1⟩𝑞1 ⊗ |𝜓2⟩𝑞2 ⇐⇒ (𝑞1 ↦→ |𝜓1⟩) ★ (𝑞2 ↦→ |𝜓2⟩).

Applying this rule may require reasoning about a state |𝜓 ⟩ to show that it has the form |𝜓1⟩𝑞1⊗|𝜓2⟩𝑞2
for some 𝑞1 and 𝑞2.

2 EXAMPLE: TELEPORTATIONWITH ENTANGLEMENT
The goal of quantum teleportation is to transfer a quantum state from one party (Alice) to another
(Bob) using only pre-shared quantum entanglement and two classical bits of information. The
protocol uses three qubits: qA, which belongs to Alice; qB, which belongs to Bob; and qM, which
contains the state that Alice wants to transfer to Bob. At the end of the protocol, qA and qMwill be in
some classical state (having been measured by the protocol) and qB will match the original state of
qM. Importantly, if qMwas initially entangled with some other set of qubits qs, then after the protocol
qB will end up entangled with qs instead. This provides a way to set up entanglement between
parties that cannot directly interact, which is a key requirement for the quantum internet [Hermans
et al. 2022]. Prior work [Boender et al. 2015; Hietala et al. 2021a; Rand et al. 2018] has verified the
teleportation protocol, but not with a general specification allowing qM to be entangled with other
(external) qubits.

The Q★ specification for teleport is shown in Listing 1. It takes four inputs, two of which are
implicit (marked with #). Type qbit is a qubit identifier and type qbits is a set of type qbit. qvec
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Listing 1. Prettified Q★ type for teleportation.

val teleport (#qs:qbits)

(qM:qbit{ disjoint {qM} qs })

(#st:qvec (union {qM} qs))

(qB:qbit{ qB <> qM /\ disjoint {qB} qs })

: STT unit

(pts_to (union {qM} qs) st `star ` pts_to {qB} (ket _ false ))

(fun _ -> pts_to (union {qB} qs) st)

{ 𝑞𝐴 ↦→ |0⟩ ★𝑞𝐵 ↦→ |0⟩ }
Entangle(qAlice , qBob)

{ {𝑞𝐴, 𝑞𝐵} ↦→ 1√
2
( |00⟩ + |11⟩) }

{ 𝑞𝑀 ∪ 𝑞 ↦→ |𝜓 ⟩ ★ {𝑞𝐴, 𝑞𝐵} ↦→ 1√
2
( |00⟩ + |11⟩) }

let (b1 , b2) = SendMsg(qAlice , qMsg)

{ 𝑞𝑀 ↦→ |𝑏1⟩ ★𝑞𝐴 ↦→ |𝑏2⟩ ★𝑞𝐵 ∪ 𝑞 ↦→ 𝑍
𝑏1
𝑞𝐵𝑋

𝑏2
𝑞𝐵 |𝜓 ⟩ }

{ 𝑞𝐵 ∪ 𝑞 ↦→ |𝜙⟩ }
DecodeMsg(qBob , classicalBits );

{ 𝑞𝐵 ∪ 𝑞 ↦→ 𝑋
𝑏2
𝑞𝐵𝑍

𝑏1
𝑞𝐵 |𝜙⟩ }

(a) Specifications for subroutines

{ 𝑞𝐴 ↦→ |0⟩ ★𝑞𝐵 ↦→ |0⟩ }
{ {𝑞𝐴, 𝑞𝐵} ↦→ |00⟩ }
H(qAlice );

{ {𝑞𝐴, 𝑞𝐵} ↦→ 𝐻𝑞𝐴 |00⟩ }
CNOT(qAlice , qBob);

{ {𝑞𝐴, 𝑞𝐵} ↦→ 𝐶𝑁𝑂𝑇𝑞𝐴,𝑞𝐵𝐻𝑞𝐴 |00⟩ }
{ {𝑞𝐴, 𝑞𝐵} ↦→ 1√

2
( |00⟩ + |11⟩) }

(b) Proof sketch for Entangle

Fig. 2. Specifications for teleport subroutines. 𝑞𝐴 , 𝑞𝐵 , and 𝑞𝑀 refer to Alice and Bob’s initial qubits and the
message qubit, respectively. The expression𝑀𝑏 is equal to𝑀 if 𝑏 is true and 𝐼 (the identity matrix) if 𝑏 is false.
A subscript on a matrix expression,𝑀𝑞 , indicates that the matrix is applied only to qubit 𝑞; multiplication
extends the matrix to the full dimension via padding.

qs is a vector state indexed by the qubit set qs. The type STT a pre post describes a Steel program
with return type a. If the initial state satisfies the precondition pre, then after execution the state is
guaranteed to satisfy postcondition post, which is a function over the return value. In the case of
teleport, the return type is unit, so the return value can be ignored. In plain text, the specification
in Listing 1 says that if qM is initially in some (possibly entangled) state st and qB is in the state |0⟩,
then after the protocol qB will be in state st.

We summarize the pre- and post-conditions for each component of teleport (using the operation
names in Listing 2, described below) in Figure 2(a). In Figure 2(b), we sketch the proof that the
Entangle subroutine matches its specification.

3 LONG-TERM VISION: FORMAL VERIFICATION FOR Q#
A broader goal of our work is to provide formal verification for Microsoft’s high-level quantum
programming language, Q# [Heim 2020; Svore et al. 2018], and our design of Q★ reflects this.
Listing 2 shows the implementation of quantum teleportation in Q#. As can be seen, Q# is a hybrid
imperative/functional language with a special type for quantum state (Qubit) and operations that
act on the quantum state (e.g., H, CNOT, M, use). Our Q★ encoding of the teleport program is similar,
except that it includes more sophisticated type annotations and intermediate calls to lemmas.
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Listing 2. Teleportation in Q#, adapted from the Quantum Katas [Mykhailova 2020]. Adj marks an operation
as adjointable, and Adjoint applies its adjoint.

operation Entangle (qAlice : Qubit , qBob : Qubit) : Unit is Adj {

H(qAlice );

CNOT(qAlice , qBob);

}

operation SendMsg (qAlice : Qubit , qMsg : Qubit) : (Bool , Bool) {

Adjoint Entangle(qMsg , qAlice );

let m1 = M(qMsg);

let m2 = M(qAlice );

return (m1 == One , m2 == One);

}

operation DecodeMsg (qBob : Qubit , (b1 : Bool , b2 : Bool)) : Unit {

if b1 { Z(qBob); }

if b2 { X(qBob); }

}

operation Teleport (qMsg : Qubit , qBob : Qubit) : Unit {

use qAlice = Qubit ();

Entangle(qAlice , qBob);

let classicalBits = SendMsg(qAlice , qMsg);

DecodeMsg(qBob , classicalBits );

}

Q#

Q*

translate 
to

proof succeeds, 
compile source

proof fails, 
refine source

QIR

Fig. 3. Overview of (proposed) toolchain for Q#.

Figure 3 presents our vision to integrate Q★ into the Q# toolchain: (1) Users write their programs
in Q#, taking advantage of the many features available in Microsoft’s Quantum Development
Kit; (2) The Q# program is translated into Q★ and various properties are proved about the Q★

representation; (3a) If the proofs succeed, then the original Q# program is compiled to Microsoft’s
QIR [Geller 2020] or simulated on a classical machine; (3b) If the proofs fail, then the Q# code is
refined.
The kinds of properties we might prove about Q★ programs include correctness specifications,

like the one for teleport above, or simpler, Q#-specific well-formedness properties. One such
property, naturally enforced by a separation logic, is discard safety. It is “safe” to discard a qubit
when it is not entangled with any other qubits in the program. In Q#, qubits are implicitly discarded
at the end of their lexical scope (e.g., in Listing 2, qAlice is discarded at the end of Teleport’s body).
Discarding an entangled qubit results in an implicit measurement of that qubit, which may change
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the rest of the program state in unintended ways. To avoid this, the Q# simulator enforces at
runtime that discarded qubits are unentangled with the rest of the computation and, additionally,
that they are in a classical state. Q★’s precondition on discard (Figure 1) enforces that the input
qubit is unentangled, so proving a property about a program using our separation logic naturally
guarantees discard safety.
In some cases, checking for discard safety is easy (e.g., when a qubit is measured before being

discarded, or only subject to single-qubit gates), but this is not always the case due to the use of
uncomputation. It is common practice in quantum computing to use ancilla qubits to store temporary
values (e.g., the carry bit in an addition circuit). These ancilla qubits may be entangled with the rest
of the state to perform some operation, but they will be uncomputed (and not measured) before the
ancilla are discarded. In these cases, proving that a program is discard-safe will require manual
reasoning about the underlying vector state.

4 CURRENT STATE
Q★ is a work-in-progress. Here we summarize what we have completed so far, and what remains
to be done. We invite contributions!3

• We defined a model of quantum state and its partial commutative monoid.
• Using this model, we implemented actions for generic gate application, discarding a qubit,
and ghost operations to share and gather qubits (i.e., the entailment rule from the end of
Section 1). Although we have specified types for measurement and allocation, we have yet
to finish their implementation.
• We sketched the interface for a F★ linear algebra library with a commutative tensor product.

Our underlying implementation of matrices and is taken from our previous work on formal-
izing quantum computing in Coq [Hietala et al. 2021b; Rand et al. 2018]; the key difference
is in our implementation of the tensor product. In Coq, we used the Kronecker product,
which is not commutative. In Q★, we provide the qvec type, which is a wrapper around
vectors (i.e., single-column matrices) that is indexed by a set of qubits 𝑞𝑠 . We assume that
qubits have some inherent ordering, and we maintain that ordering within the vector. So
to implement the tensor product, we use the standard Kronecker product followed by the
SWAP operations needed to re-sort the qubits. As a result, if vector 𝑣1 has type qvec 𝑞𝑠1 and
vector 𝑣2 has type qvec 𝑞𝑠2 then 𝑣1 ⊗ 𝑣2 = 𝑣2 ⊗ 𝑣1 and both have type qvec (𝑞𝑠1 ∪ 𝑞𝑠2). We
have not yet finished the proofs of our implementation of tensor product.
• We implemented the teleport example described above, although our implementation uses

the measurement and allocation actions, which are not fully defined, and admitted lemmas
related to linear algebra.
• We developed a plugin for the Q# compiler that converts Q# programs into an F★ represen-
tation [Hietala 2022, Ch. 5], although it requires updates to support the teleport example.
For now, we expect users to manually add pre- and postconditions into the generated Q★

code, but it is an interesting challenge to consider generating specifications automatically.
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3https://github.com/microsoft/qsharp-verifier/tree/sep-logic
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