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Abstract

Software bugs are a reality of programming. They can be di�cult to identify and resolve,

even for the most experienced programmers. Certain bugs may even be impossible to re-

move because they provide some desired functionality. For this reason, designers of modern

security-critical applications must accept the inevitable existence of bugs and find ways to

detect and recover from the errors they cause. One approach to error detection involves run-

ning multiple implementations of a single program at the same time, on the same input, and

comparing the results. Divergence of the behavior of the di↵erent implementations indicates

the existence of a bug.

The question we consider in this paper is how to construct these diverse implementa-

tions of security-critical programs in a cost-e↵ective way. The solution we propose is to

first find existing diverse function implementations and then use these function implemen-

tations as building blocks for diverse program implementations. To find diverse function

implementations, we use a technique we call adaptor synthesis to compare arbitrary func-

tions for behavioral equivalence. To account for di↵erences in input argument structure

between arbitrary functions we allow for adaptor functions, or adaptors, that convert from

one argument structure to another. Using adaptors, the problem of determining whether

two arbitrary functions are behaviorally equivalent becomes the problem of synthesizing an

adaptor between the two functions that makes their output equivalent on all inputs in a

specified domain.

Along with presenting our adaptor synthesis technique, we describe an implementation

for comparing functions for behavioral equivalence at the binary level on the Linux x86-64

platform using a family of adaptors that allows arithmetic combinations of integer values.
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Chapter 1: Introduction

1.1 Objective

The purpose of this work is to provide an automated method for finding behaviorally equiv-

alent functions, where behavioral equivalence relates to input and output behavior. To do

this, we use a technique we call adaptor synthesis to search for adaptor functions that trans-

form a function’s input, causing its behavior to match that of a specification function. The

intended application of this work is in constructing di↵erent program implementations for a

multivariant execution system. In this paper we present both a general approach for find-

ing adaptor functions and an implementation of our approach where adaptor functions are

constructed from arithmetic operations on integer values.

1.2 Background

This section provides a brief introduction to two areas of research central to our work:

software diversity and program synthesis. A more comprehensive description of the current

state of relevant research in both fields can be found in Chapter 2. This section also provides

a quick introduction to our adaptor synthesis technique.

1.2.1 Software Diversity

Security-oriented software diversity aims to introduce implementation uncertainty into security-

sensitive programs. The intention is that this introduced uncertainty will force attackers to

make guesses about some program details, greatly increasing the cost of developing certain

types of attacks. For example, address space layout randomization (ASLR), a technique
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implemented on most modern operating systems, provides protection against bu↵er overflow

attacks by randomizing the location where code and data are loaded into memory. Similar

randomization can also provide probabilistic protection against a variety of other memory

errors including dangling pointers and uninitialized reads in unsafe languages like C and

C++ [4].

However, in today’s computers, diversity is the exception rather than the rule. Hardware,

operating systems, and applications are all highly standardized to allow for easy distribution

and maintenance. The significance of this from a security standpoint is that once an attacker

chooses a target system, he or she can easily download an identical copy of the operating

system and commodity software running on that target and probe them for vulnerabilities.

Any exploit that the attacker finds can then be used not only against the intended target,

but also against any system running that particular operating system/vulnerable software

combination. The 2014 Heartbleed vulnerability in OpenSSL, which allowed attackers to

remotely read protected data from an estimated 24-55% of popular HTTPS sites [9], is one

example of a widespread attack made possible by the lack of diversity in modern critical

software. Research into software diversity aims to make exploiting software vulnerabilities

more expensive by randomizing implementation details of programs across di↵erent systems.

This randomization makes it more di�cult both for an attacker to obtain an exact copy of

the software on their target system and to carry out a large-scale attack with a single exploit.

This project focuses on an application of software diversity known as N -version program-

ming. In N -version programming, the goal is to obtain fault tolerance by executing diverse

implementations of a program at the same time, on the same input, and then comparing

the implementations’ results. Traditionally, these di↵erent implementations (or ‘versions’)

are developed separately by di↵erent teams of programmers using di↵erent programming

languages and algorithms. Under the assumption that independently developed pieces of

software have independent bugs— making it statistically unlikely that many versions will

have the same bug— an error in one program version can be detected when that version’s
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behavior begins to deviate from the behavior of the others. N -version programming systems

can also recover from some errors by choosing the majority result of a computation as the

‘correct’ result. This means that in order for an attack on an N -version system to be ef-

fective, an attacker must compromise a majority of the versions at the same time with the

same input.

But there are two major drawbacks to N -version programming: 1) it requires manual

development and maintenance of multiple implementations of the same functionality, which

can become costly, and 2) it is di�cult to reason about the independence of bugs among the

di↵erent versions and to find what bugs they have in common. Recent work on N -variant

systems has aimed to address these drawbacks by automating the construction of ‘variants’

that have certain desirable security properties, such as having disjoint vulnerabilities. (Note

that the distinction between a ‘variant’ and a ‘version’ is that variants are automatically

constructed, while versions are manually developed.) However, current N -variant approaches

are limited in the types of diversity that they can introduce. For example, they cannot

diversify high-level implementation details like choice of algorithms or data structures. We

are interested in whether there is a way to construct more diverse program variants using

mined behaviorally equivalent functions. This paper focuses primarily on the task of finding

behaviorally equivalent functions.

Notice that we focus on finding existing behaviorally equivalent functions rather than

constructing diversified implementations of a given functionality. We suggest that this is

possible because of our observation that in any large codebase there are likely several di↵erent

functions that e↵ectively ‘do the same thing.’ This could be the result of a variety of

factors including poor communication between collaborating developers, incomplete code

documentation, or a lack of understanding of the capabilities of existing functions— all of

which lead to developers unintentionally re-implementing existing code. By reusing existing

function implementations we hope to avoid the programming e↵ort required by a traditional

N -version approach, while still allowing for more interesting diversity than is in a typical N -
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variant approach. But note that our work does not address the second drawback mentioned

above— we cannot guarantee that the di↵erent function implementations we find actually

have independent bugs.

1.2.2 Program Synthesis

In order to find equivalent function implementations, we rely on a technique known as

program synthesis. The motivating principle behind program synthesis is that the most pro-

ductive way for people to write programs is for them to specify what they want a program to

do and have the computer decide how to do it. When programmers can specify computation

at a high level, they are able to devote more of their time to creative problem solving and

spend less of their time on obscure implementation details like array index expressions and

bit manipulations.

This project focuses on a type of program synthesis known as counterexample-guided

inductive synthesis (CEGIS). The general CEGIS approach, depicted in Figure 1.1, begins

with a specification of the desired program and then alternates between using a synthesizer

and a verifier until a program satisfying that specification is produced. The job of the

synthesizer is to produce a candidate program that might satisfy the specification, while

the job of the verifier is to decide whether that candidate program actually satisfies the

specification. If not, the verifier provides feedback to the synthesizer to help it search for a

new candidate. This feedback is typically a ‘counterexample,’ which is an input on which

the candidate program failed to satisfy the specification.

We use CEGIS when comparing functions for behavioral equivalence. Roughly speaking,

we consider two functions to be behaviorally equivalent if they ‘do the same thing,’ meaning

that they produce equivalent output on most inputs. We require equivalent output on most

rather than all inputs because we want to allow for equivalence between functions that have

di↵erent behaviors on ‘bad’ inputs (e.g. inputs that trigger a bug or error handling). This
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Figure 1.1: Diagram of the standard CEGIS loop.

enables the construction of program variants with di↵erent bugs.

Because we are targeting functions that have been independently re-implemented, we

want to allow for equivalence between functions with di↵erent argument structures. To make

the argument structure of one function match that of another we use CEGIS to synthesize

an adaptor function (or ‘adaptor’). This approach is described in more detail in Chapter 3,

but the general idea is to compare functions f1 and f2 for equivalence using a CEGIS loop

where the specification is provided by the input and output behavior of f1, the synthesizer

searches for adaptors over the arguments of f2 that make the behavior of f2 match that of

f1, and the verifier looks for inputs that cause f1 and f2 to have di↵erent behaviors with a

given adaptor.
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Chapter 2: Literature Review

In this chapter we describe the current state of relevant research in N-version and N-variant

systems, detection of equivalent code, and counterexample-guided inductive synthesis.

2.1 N -version and N -variant Systems

The technique of N -version programming, as described in Section 1.2.1, was introduced as

early as the 1970s [2]. Since that time, a variety of work has analyzed the assumption

of the independence of errors among di↵erent versions [24], the e↵ectiveness of N -version

programming in the presence of overlapping errors [10], and the practicality from a software

engineering standpoint of developing multiple (potentially less-reliable) versions as opposed

to a single highly-reliable version [17]. Generally this work concludes that running di↵erent

program versions simultaneously and using a voting mechanism can produce a system that

is more reliable than any of the versions individually, and that developing di↵erent program

versions is a good way to achieve fault tolerance, especially considering that it is di�cult to

develop one really good, bug-free version. However, this work also suggests that it is di�cult

to make formal guarantees about the security that an N -version system provides.

Recent approaches to N -version programming have taken advantage of natural diversity

in related software products [14, 34]. Natural diversity refers to diverse implementations of

the same functionality that emerge naturally, often as the result of economic competition.

Natural diversity can be seen in the diverse implementations of, but similar functionalities

provided by, web browsers, operating systems, firewalls, database management systems,

and so on [3]. These naturally-emerging diverse implementations of commercial-of-the-shelf

(COTS) products are good candidates for N -version programming because they tend to have

non-overlapping bugs [15, 16]. However, determining which COTS products provide the same
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functionality (and so can be used together in an N -version system) is still a manual process.

Our work aims to automatically detect natural diversity when searching for behaviorally

equivalent functions.

Another recent take on the idea of executing multiple implementations of a program

simultaneously for fault tolerance is called N -variant (or multivariant) execution [7, 31].

The distinction between a ‘version’ and a ‘variant’ is that a version is manually developed

while a variant is automatically generated. Cox et al. [7] show how to construct variants in

such a way that they have disjoint vulnerabilities with respect to certain classes of attacks.

They focus on two diversification techniques: memory address partitioning, which provides

protection against attacks involving absolute memory addresses, and instruction tagging,

which detects attempts to execute injected code. Salamat et al. [31] introduce a user-space

multivariant execution environment (MVEE) that monitors multiple variants of a program

running in parallel and show that this technique is e↵ective in detecting and preventing code

injection attacks. MVEE variants are generated using di↵erent directions of stack growth

and system call number randomization. One restriction on the MVEE is that it requires

all variants to make the same system calls, in the same order, with the same arguments.

This restriction motivates some of our handling of side-e↵ects when comparing functions for

equivalence.

N -variant execution is attractive because it allows for automated construction of di↵erent

program implementations and enables formal arguments about a system’s security. However,

existing variant construction techniques are limited in the types of diversity that they can

introduce. Techniques like memory address partitioning, instruction tagging, memory rear-

rangement, and system call randomization all preserve program control flow and semantics,

which means that they cannot detect common attacks such as cross-site scripting, directory

traversal, and SQL injection that take advantage of flaws in the program logic (i.e. program

semantics) itself [5]. Our approach of using diverse function implementations to construct

program variants has the potential to detect a broad range of interesting attacks.
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We envision that the diverse function versions that our tool discovers can be used in an

automated way to construct program variants. A discussion of how to construct these pro-

gram variants is beyond the scope of this paper, but the general idea is to replace (statically

or dynamically) function calls in a source program with di↵erent, but equivalent, function

calls to produce a new variant of that program [5].

Another common approach to developing variants, which is not obviously compatible with

our idea of using behaviorally equivalent functions, relies on compiler-based randomization

[25]. It is often convenient to modify a compiler to support randomization because compilers

already perform many of the analyses required for randomization and are designed to target

many di↵erent architectures. However, compiler-based variant generation requires that the

source code of the program to be randomized is available and that it is possible to customize

the compiler. Our approach to constructing variants does not rely on the availability of

source code and is compatible with proprietary compilers. Compiler-based approaches to

diversity are also limited in the types of diversity that they can introduce.

2.2 Detecting Equivalent Code

Detecting pieces of equivalent code is useful for many applications including refactoring, code

understanding, bug finding, and optimization. The majority of previous work in this area has

focused on detecting syntactically equivalent code, or ‘clones,’ which are typically the result of

copy-and-paste [20, 23, 26]. Generally speaking, we are not interested in finding syntactically

similar functions because such functions were likely not independently implemented and may

have similar, if not identical, vulnerabilities.

Recent work has begun to consider the problem of detecting behaviorally equivalent

pieces of code, or ‘semantic clones’. Applications of detecting semantic clones (aside from

our motivating application of multivariant execution) include functionality-based refactoring,

semantic-aware code search, and checking ‘yesterday’s code against today’s.’ Equivalence
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between code fragments may be defined in terms of internal behavior (e.g. code fragments

may be considered equivalent if they have isomorphic program dependence graphs [12]) or

input/output behavior. We focus on the latter approach because it allows for equivalence

between more computationally diverse code.

Recent tools for detecting semantic clones using an input/output based definition of

equivalence include EQMINER from Jiang et al. [21] and UC-KLEE from Ramos and En-

gler [30]. EQMINER detects behaviorally equivalent code fragments using random testing,

and has been used to show that Linux kernel 2.6.24 contains many behaviorally equivalent

code fragments that are syntactically di↵erent. Similar to our work, EQMINER allows for

equivalence between code fragments with di↵erent argument structures. Specifically, inputs

to a code fragment may be permuted or combined into structs. We view these operations

as limited types of adaptor functions between code fragments. UC-KLEE checks for equiva-

lence between arbitrary C functions using symbolic execution, and has been used to detect

discrepancies between function implementations in di↵erent versions of the C library. UC-

KLEE does not support equivalence between functions with significantly di↵erent argument

structures.

2.3 CEGIS

Program synthesis is an active area of research that has many applications including gener-

ating optimal instruction sequences [29, 22], automating repetitive programming, filling in

low-level program details after programmer intent has been expressed [33], and even binary

diversification [18]. Programs can be synthesized from formal specifications [27], simpler

(likely less e�cient) programs that have the desired behavior [29, 33, 22], or input/output

oracles [19]. We take the second approach to specification in our work, treating existing

functions as specifications when synthesizing adaptors.

As described in Section 1.2.2, we focus on a type of synthesis known as counterexample-
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guided inductive synthesis (CEGIS). CEGIS is useful for our work because it is guaranteed to

terminate when the space of possible programs is finite, and if it terminates by producing a

program, then that program is guaranteed to be correct with respect to the specification [33].

This means that when comparing functions for equivalence, if we restrict our attention to a

finite family of adaptors, then the adaptor synthesis process is guaranteed to terminate with

an adaptor that makes the two functions behaviorally equivalent (possibly over a restricted

input domain), or some indication that the functions are not behaviorally equivalent with

any adaptor in the specified family. Also, although the space of candidate programs may

be very large, the search for a correct program under CEGIS tends to take relatively few

iterations [33].
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Chapter 3: Approach

3.1 Tools

FuzzBALL [28] is a symbolic execution tool for exploring execution paths in binary code.

The idea of symbolic execution is to execute programs with certain concrete program state

values replaced by symbolic variables that keep track of how that state is updated. Using

symbolic execution, we can build up symbolic formulas that describe a program’s output on

many di↵erent concrete inputs. In the context of our project, symbolic execution allows us

to ask questions such as ‘what inputs will cause this function to have a di↵erent output from

the specification?’ and ‘what program state values will cause this function to have the same

output as the specification on a given input?’. FuzzBALL is the backbone of the verifier and

synthesizer components of our tool for finding behaviorally equivalent functions.

To check whether constructed symbolic formulas are feasible, FuzzBALL relies on a Sat-

isfiability Modulo Theories (SMT) solver. SMT solvers check the satisfiability of logical

formulas over one or more theories. They have become increasingly popular with symbolic

execution tools like FuzzBALL because of their natural application to checking conditions on

transitions between di↵erent program states [8]. For this work we use the STP SMT solver

[13].

3.2 Adaptor Synthesis

In this section we describe the idea behind, and our implementation of, what we call adaptor

synthesis. The goal of adaptor synthesis is to construct an adaptor function, or adaptor,

that makes the behavior of one function, f2, match the behavior of another (oracle) function

f1. That is, when the adaptor is applied to the arguments of f2, f2 must produce output
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equivalent to that of f1 on all inputs (possibly in a restricted domain). Given a correct

adaptor over the arguments of f2, we can use f2 interchangeably with f1 at any point in a

program. We then say that f1 and f2 are behaviorally equivalent. We do not require the

existence of an adaptor in the other direction (i.e. an adaptor over the arguments of f1)

in order for f1 and f2 to be considered equivalent. In the case where no adaptor over the

arguments of f1 or f2 makes the behavior of f1 and f2 match, we say that the functions are

not behaviorally equivalent. It is possible for there to be multiple correct adaptors between

f1 and f2.

Our ability to determine whether two functions are behaviorally equivalent depends on

the types of adaptors that we allow. More restrictive adaptors allow for equivalence between

fewer functions. More expressive adaptors allow for equivalence between more functions,

which helps in discovering diverse implementations of a functionality, but increases the search

space for synthesis, often resulting in significant performance impacts.

Our approach to synthesizing adaptors can be summarized as follows: given two functions,

f1 and f2, that take arguments (x1, ..., xn) 2 X and (y1, ..., ym) 2 Y respectively, and a finite

family of adaptor functions A, our goal is to find a function a 2 A, a : X 7! Y such that

f1(x1, ..., xn) = f2(a(x1, ..., xn)) for all (x1, ..., xn). We do this by alternating between the use

of a synthesizer that generates candidate adaptors a and a verifier that looks for values of

x1, ..., xn that do not satisfy the relation f1(x1, ..., xn) = f2(a(x1, ..., xn)) for a given candidate

adaptor. This approach, which we refer to as adaptor synthesis, is depicted in Figure 3.1.

This description warrants additional explanation on a few points:

• When comparing the output of f1 and f2, we need to take into account both the return

values of the functions as well as their side-e↵ects. A function’s side-e↵ects include its

system calls and modifications it makes to global memory or data pointed to by input

pointer arguments.1

• Comparing the output of f1 and f2 for equivalence is not necessarily the same as check-

ing for equality. For example, if f1 and f2 both return zero to indicate ‘false’ and an
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arbitrary nonzero value to indicate ‘true,’ then their return values may be semanti-

cally equivalent on an input without being exactly equal. Similar issues arise when

comparing side-e↵ects for equivalence because a single system call may have equivalent

behavior with di↵erent arguments (e.g. two calls to open with di↵erent bu↵ers con-

taining the same file path), di↵erent system calls may have equivalent behavior with

certain arguments (e.g. creat is equivalent to open when its second argument is set to

O CREAT |O WRONLY |O TRUNC), and writes to di↵erent locations in memory

may be equivalent if the data written is the same.

• Our synthesis tool relies on the assumption that a function’s behavior depends only

on its input arguments and not on the environment. To account for e↵ects of the envi-

ronment on a function’s behavior, we could treat environment variables as additional

inputs to the functions under consideration.

• The input spaces X and Y of f1 and f2 above do not necessarily consist of all possible

inputs to f1 and f2. For example, say that f1 takes one argument, and that argument

is used in the body of f1 as an ASCII character. Then the input space X may only

consist of integer values between 0 and 127. f1 may have even been implemented

in such a way that its behavior on inputs outside the range 0–127 is undefined. In

this situation, it only makes sense to consider the behavior of f1 on inputs in the

range 0–127 when comparing it for equivalence with other functions. Another reason

for considering a function’s behavior on some (rather than all) inputs comes from our

motivating application of multivariant execution. If we can find an adaptor that makes

f1 and f2 produce the same output on all inputs, then f1 and f2 have identical bugs,

and are not useful for multivariant execution. By ignoring behavior on some inputs, we

allow for equivalence between diverse function implementations that have, for example,

1The details of handling side-e↵ects are not discussed in this paper because the relevant work was not
specific to the author, and the example functions we present here do not have side-e↵ects. However, the
current implementation of our tool does have basic handling for side-e↵ects [32]. We require that equivalent
functions make the same sequence of system calls with the same arguments (as inspired by the MVEE
described by Salamat et al. [31]), and make the same writes to non-local addresses.
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di↵erent error handling.

• Our definition of equivalence is based only on input and output behavior, and does

not take into account intermediate program states. This allows us to detect diverse

implementations of the same behavior.

Figure 3.1: An overview of the CEGIS loop used in adaptor synthesis.

In Chapter 4, we present a family of adaptors that map between integer values using

integer arithmetic operations.2

To implement the discussed approach, we rely on FuzzBALL’s ability to symbolically

explore execution paths and return satisfying assignments to symbolic variables on each

2We actually developed several types of adaptors as part of this project including adaptors allowing type
conversions between arguments, floating point arithmetic operations, and operations on strings. We also
added support for applying adaptors to function return values [32]. However, only work specific to the
author is described here.
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path it explores. During synthesis, we ask FuzzBALL for satisfying assignments on execution

paths where the behavior of f2 matches that of f1. During verification we ask FuzzBALL for

satisfying assignments on execution paths where the behavior of f2 di↵ers from that of f1.

More concretely, say that f1 takes arguments (x1, ..., xn) and f2 takes arguments (y1, ..., ym).

To compare f1 and f2 for equivalence, we construct a program that branches on whether

their outputs match on a specified input. Such a program may have the following structure:

void compare ( x1 , . . . , xn ) {

r1 = f1 ( x1 , . . . , xn ) ;

r2 = f2 ( a ( x1 , . . . , xn ) ) ;

i f ( r1 = = r2 ) { p r i n t f ( ”Match\n” ) ; }

else { p r i n t f ( ”Mismatch\n” ) ; }

}

Using FuzzBALL, we can determine what values of a and x1, ..., xn cause each direction

of the branch to be taken. During synthesis we are interested in the ‘match’ branch and

during verification we are interested in the ‘mismatch’ branch. A candidate adaptor a is

generated by executing the above program with a symbolic and x1, ..., xn concrete (the values

of x1, ..., xn come from previously generated counterexamples). When FuzzBALL explores

the ‘match’ branch under these conditions, a valid assignment to a will be an adaptor that

makes the outputs of f1 and f2 match on all generated test cases. Counterexamples are

generated by executing the above program with x1, ..., xn symbolic and a concrete (here a

is a previous candidate adaptor). When FuzzBALL explores the ‘mismatch’ branch under

these conditions, a valid assignment to the symbolic variables x1, ..., xn will be an input on

which the outputs of f1 and f2 are not equal with the provided adaptor. We indicate to

FuzzBALL that x1, ..., xn are symbolic by tagging the registers or stack locations where those

variables are stored as symbolic memory. How exactly a is represented and made symbolic

will depend on the type of adaptor used.
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Chapter 4: Results

We implemented the technique described in the previous chapter to compare functions at the

binary level on the Linux x86-64 platform. This chapter presents one type of adaptor that our

implementation supports: a family of adaptors allowing arithmetic relations between integer

values. This type of adaptor allows us to compare functions that take integer arguments.

We begin this chapter with a discussion of the family of ‘integer arithmetic adaptors’ and

conclude with comments on our implementation’s performance when synthesizing adaptors

of this type.

4.1 Integer Arithmetic Adaptors

Integer arithmetic expressions are a popular target for traditional synthesis because they

have a simple form, but often require significant programmer e↵ort. For example, many bit

manipulation and array index expressions can be expressed as integer arithmetic expressions.

We can use integer arithmetic expressions to construct integer arithmetic adaptors between

functions that take integer inputs.

We represent integer arithmetic expressions using binary trees whose nodes are constant

values, variables, or operators. The operators we allow are listed in Table 4.1. We compute

the value of an expression tree in the natural way:

• If the root of the tree is a constant or variable, then the value of that tree is that

constant or variable.

• If the root of the tree is a binary operator, then the value of that tree is that operator

applied to the values of the left and right subtrees.
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• If the root of the tree is a unary operator, then the value of that tree is that operator

applied to the value of the left subtree.

addition (+) subtraction (-)
multiplication (*) bitwise and (&)
bitwise or (|) bitwise exclusive or (�)
unsigned division (/u) signed division (/s)
unsigned mod (%u) signed mod (%s)
left shift (⌧) logical right shift (�u)
arithmetic right shift (�s) negation (-)
bitwise negation (¬)

Table 4.1: Integer arithmetic operators supported by FuzzBALL. Note that the division,
mod, and shift operators require special handling to avoid division or mod by zero and shifts
by an inappropriate value.

To represent an integer arithmetic adaptor between f1(x1, ..., xn) and f2(y1, ..., ym), we

use m expression trees whose variables can be any of x1, ..., xn. To apply an integer arith-

metic adaptor to the arguments of f2, we replace the ith argument with the value of the ith

expression tree. As an example, consider f1(x1, x2) = (x1+1)⇤ (2�x2) and f2(y1) = y1 . We

represent an integer arithmetic adaptor between f1 and f2 as a single expression tree whose

variables can be any of x1, x2. An expression tree representing a correct adaptor between

f1 and f2 is given in Figure 4.1. When f2 is called with the value of the expression tree in

Figure 4.1 as input, its behavior will be equivalent to the behavior of f1.

From FuzzBALL’s perspective, an expression tree is a collection of symbolic variables and

rules relating those symbolic variables. The symbolic variables indicate the types and values

of nodes in the expression tree and the ‘rules’ are constraints passed to the SMT solver that

encode how the expression tree is evaluated. The expression tree in Figure 4.1 is represented

by 14 symbolic variables, two for each of the seven nodes.

As the depth of an expression tree increases, the number of symbolic variables needed

to represent it increases exponentially. Additional symbolic variables and constraints make

it more di�cult for the SMT solver to check whether an expression is satisfiable and to

find satisfying solutions, so increasing tree depth significantly increases the time required
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Figure 4.1: A representation of the adaptor a(x1, x2) = (x1 + 1) ⇤ (2 � x2). Each node is
associated with two symbolic variables that correspond to that node’s type and value. For
example, the root node a has two associated symbolic variables, atype and aval, that indicate
that it is an operator that corresponds to multiplication. We consider this expression tree
to have depth 3.

to synthesize candidate adaptors. We consider how tree depth impacts performance in

Section 4.2.

4.1.1 Examples

In this section we provide examples of functions that can be made equivalent using integer

arithmetic adaptors.
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4.1.1.1 Rectangle Example

Consider two functions, f1 and f2, that check whether a point (x, y) is inside of a rectangle.

We may think of f1 and f2 as functions used by a GUI application that needs to check

whether the cursor is in a certain region of the display. Let f1 and f2 be defined by:

int f 1 ( int x , int y ) {

return (0 <= x) & (x <= 1) & (0 <= y) & (y <= 1 ) ;

}

int f 2 ( int x , int y ) {

return (2 <= x) & (x <= 4) & (1 <= y) & (y <= 4 ) ;

}

The rectangles corresponding to f1 and f2 are drawn in Figure 4.2. Our goal is to find

an adaptor over the arguments of f2 that makes the behavior of f2 equivalent to that of f1.

Figure 4.2: The rectangles of interest for f1 and f2. We want to determine whether the
problem of checking whether a point (x, y) is in the square to the left is equivalent to the
problem of checking whether an adapted version of (x, y) is in the rectangle to the right.
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x 2x+ 2 y 2y + 2
0 ! 2 0 ! 2
1 ! 4 1 ! 4
231 ! 2 231 ! 2

231+1 ! 4 231+1 ! 4

Table 4.2: All values of x and y that
are mapped into the region 2  x  4,
1  y  4 by a1. a1 works as intended
on inputs (0, 0), (0, 1), (1, 0), and (1,
1), but produces di↵ering behavior be-
tween f1 and f2 on inputs like (0, 231),
(1, 231 + 1), (231, 231), etc. because of
integer overflow.

x 2x+ 2 y 3y + 1
0 ! 2 0 ! 1
1 ! 4 1 ! 4
231 ! 2 232+2

3 ! 3
231+1 ! 4

Table 4.3: All values of x and y that are
mapped into the region 2  x  4, 1 
y  4 by a2. a2 works as intended on
inputs (0, 0), (0, 1), (1, 0), and (1, 1),
but produces di↵ering behavior between
f1 and f2 on inputs like (0, 232+2

3 ), (231,
0), etc. because of integer overflow. Note
that a1 and a2 have di↵erent sets of error
values

Two plausible adaptors are:

a1(x, y) = (2x+ 2, 3y + 1) (4.1)

and

a2(x, y) = (2x+ 2, 2y + 2) (4.2)

However, these adaptors are only correct over mathematical integers. When using fixed-

size machine integers, neither of these adaptors will cause f1 and f2 to produce equivalent

outputs on all inputs. For example, using 32-bit arithmetic f1(x, y) = 0 while f2(a1(x, y)) = 1

on the input (x, y) = (0, 0x80000000). Similarly, f1(x, y) = 0 while f2(a2(x, y)) = 1 on the

input (x, y) = (1, 0x55555556). See Tables 4.2 and 4.3 for a list of all values of x and y that

are mapped onto the rectangle with corners at (2,1) and (4,4) by a1 and a2.

Generally, however, we want to think of a1 and a2 as being correct adaptors that show

that f1 and f2 are equivalent. This means that we need to ignore the ‘bad’ inputs that cause

integer overflow. To do this, we restrict the counterexamples that our verifier can produce.

Returning to our GUI application, we may require that all counterexamples (x, y) satisfy

0  x  1920 and 0  y  1080, because 1920 ⇥ 1080 pixels is a standard screen resolution.

With this restriction, points like (0, 0x80000000) will not be considered counterexamples,
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and f1 and f2 can be considered behaviorally equivalent with a1 and a2.

Using counterexample restrictions, our tool can synthesize both a1 and a2 (using di↵erent

random seeds) with a depth 3 tree allowing at least the operations for addition and mul-

tiplication. Note that in this example, our adaptors between f1 and f2 actually introduce

new integer overflow bugs that did not exist in the original functions. In general this is not

something we want, but the point of this example is to show that our adaptor synthesis

technique can allow for equivalence between functions that diverge on some ‘bad’ inputs.

4.1.1.2 General Synthesis

To point out the relationship between adaptor synthesis and traditional program synthesis,

we show how to use adaptor synthesis to construct a bit manipulation expression from

Hacker’s Delight [35], a popular source of benchmarks for synthesis performance.

To begin, consider the following two functions:

int f 1 ( int x ) {

int i ;

i f ( x = = 0) { return x ; }

for ( i = 0 ; i < 8 ⇤ s izeof ( x ) ; i++) {

i f ( x & (1 << i ) ) { break ; }

}

return x ˆ= (1 << i ) ;

}

int f 2 ( int x ) {

return x & (x � 1 ) ;

}

Both of these functions turn o↵ the rightmost bit in the input x that has the value 1,
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or return 0 when x is 0. Followed by a zero test, these functions can be used to determine

whether an unsigned integer is 0 or a power of 2. The second version of the function is more

optimized, but the first is easier to read and more natural to construct. A typical synthesis

problem is to generate the second function using the behavior of the first.

We can apply adaptor synthesis to this problem by comparing f1 as defined above with

the identity function f2 below:

int f 2 ( int x ) { return x ; }

Using a depth 3 expression tree, our tool finds that f1 and f2 are equivalent with the

adaptor a(x) = x & (x� 1), which is exactly the expression we wanted to synthesize.

4.1.1.3 C Library Functions

As part of a large-scale experiment, we searched for behaviorally equivalent functions in

the GNU C library (glibc) [1]. Although behaviorally equivalent functions in glibc likely

have similar implementations, meaning that they are not useful for N -version or N -variant

applications, it is still interesting to see that behaviorally equivalent functions exist ‘in the

wild,’ even in widely used and heavily tested code bases. Here we present two pairs of glibc

functions that we found to be equivalent under the family of integer arithmetic adaptors.

isupper and islower — isupper and islower check whether a character is uppercase or

lowercase respectively. When the inputs to both functions are representable as unsigned

characters (0–255) or EOF, isupper(x) is equivalent to islower(x + 32) and islower(x) is

equivalent to isupper(x � 32). The behavior of isupper and islower on inputs that are

not EOF and not in the range 0–255 is undefined. This means that we must restrict the

counterexamples that the verifier can generate in order to synthesize an adaptor that makes

these functions equivalent. Another interesting feature of isupper and islower is that they

return di↵erent nonzero values to indicate ‘true,’ so checking for equivalence between their

outputs is not the same as comparing their return values for equality.



CHAPTER 4. RESULTS 26

killpg and kill — killpg, which sends a signal to a process group, and kill, which sends a

signal to a process or a group of processes, are equivalent with the adaptor a(x, y) = (�x, y)

when x > 0. The reason for equivalence between these functions is that killpg is implemented

in terms of kill:

int k i l l p g ( p i d t pgrp , int s i g )

{

i f ( pgrp < 0) {

s e t e r r n o (EINVAL) ;

return �1;

}

return k i l l (�pgrp , s i g ) ;

}

4.2 Performance

In this section we discuss the performance of our implementation using the example from

Section 4.1.1.2 (copied below for convenience). We use this example because the equivalence

of the two functions does not depend on any restrictions on counterexamples, and the spec-

ification function (f1) involves branching, which causes our adaptor synthesis tool to take a

di↵erent number of iterations when run with di↵erent random seeds. All timings presented

in this section were taken on a machine with 192 GB RAM and Dual Xeon E5-2623 pro-

cessors running Ubuntu 14.04. However, this machine’s resources were not fully utilized in

our tests because the intention of this section is not to report measurements of an optimized

implementation, but rather to highlight general techniques for improving performance.

int f 1 ( int x ) {

int i ;

i f ( x = = 0) { return x ; }
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for ( i = 0 ; i < 8 ⇤ s izeof ( x ) ; i++) {

i f ( x & (1 << i ) ) { break ; }

}

return x ˆ= (1 << i ) ;

}

int f 2 ( int x ) { return x ; }

We know from Section 4.1.1.2 that a correct adaptor between f1 and f2 above is a(x) =

x&(x � 1). Over 10 trials, with a depth 3 tree allowing the operators +, - (subtraction),

&, |, �, ⌧, �u, �s, - (negation), and ¬, synthesizing this adaptor required an average of

17.5 iterations of the verifier/synthesizer loop and 179.7 seconds to complete. The average

time required to produce a counterexample for a candidate adaptor was 2.0 seconds, and the

average time required to verify that a candidate adaptor was correct was 9.6 seconds. Note

the di↵erence in time required for counterexample generation (when the verifier successfully

produces a counterexample) and adaptor verification (when the verifier fails to produce a

counterexample, indicating that the candidate adaptor is correct). The intuition for this

observed di↵erence is it is ‘harder’ to show that no counterexample exists than it is to

produce a counterexample. The average time required to synthesize a candidate adaptor

was 8.2 seconds. Candidate adaptor synthesis and counterexample generation times over all

10 trials are graphed in Figure 4.3.

Figure 4.3 shows that while time required to produce a counterexample for an adaptor

remained fairly constant over all iterations, the time required to produce a candidate adaptor

increased significantly with each iteration. The reason for this is that at each iteration

finding a candidate adaptor becomes more di�cult because the number of inputs on which

the candidate adaptor must have a certain behavior has increased. Figure 4.3 also show that

most of the time required for adaptor synthesis is spent on synthesizing candidate adaptors.

These observations suggest that to improve adaptor synthesis performance, we want to limit
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(1) the total number of iterations required to find a correct adaptor and (2) the time required

to synthesize a candidate adaptor at any iteration.

Figure 4.3: Candidate adaptor synthesis and counterexample generation times when synthe-
sizing the expression x&(x � 1). The lines are average times over 10 trials and the shaded
regions represent variability in our measurements using standard deviation. There is less
variability in the measurements of later iterations because few trials required more than 20
iterations to terminate. The average adaptor verification time (not shown here) was 9.6
seconds.

4.2.1 Restrictions on Expression Trees

4.2.1.1 Reducing the Number of Iterations

One way to limit the number of iterations required to find a correct adaptor is to restrict

the types of adaptors that our tool can generate. We restrict integer arithmetic adaptors by

limiting the operators and constant values that can appear within their expression trees. The

e↵ects of limiting operators and constant values in our example are reported in Table 4.4.
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number of
operators

number of
iterations

total time
counterexample
generation time

verification
time

candidate adaptor
synthesis time

2 11.4 65.0s 1.9s 9.2s 3.4s
5 14.6 91.0s 2.0s 9.4s 4.0s
7 19.2 127.0s 1.9s 8.6s 4.6s
10 17.5 179.7s 2.1s 9.6s 8.2s

size of
constants

number of
iterations

total time
counterexample
generation time

verification
time

candidate adaptor
synthesis time

2 bit 4.6 30.6s 2.0s 10.8s 3.5s
8 bits 11.4 93.2s 2.0s 10.5s 5.9s
16 bits 12.4 102.8s 1.9s 9.6s 6.3s
24 bits 15.2 136.4s 1.9s 9.3s 7.0s
32 bits 17.5 179.7s 2.1s 9.6s 8.2s

Table 4.4: Performance over 5 trials when synthesizing the expression x&(x�1) with di↵erent
restrictions on the operators and constant values allowed in the arithmetic expression tree.
In the top table all constant values are allowed, but the operators are restricted to be the
first i operators in the list [- (subtraction), &, +, |, �, - (negation), ¬, ⌧, �u, �s]. In the
bottom table all 10 original operators are allowed, but constant values are restricted to be
in the range (�2i�1, 2i�1 � 1).

The main takeaway from Table 4.4 is that the number of iterations decreased as we

restricted operators and constant values, which led to lower total running time. Note that

when restricting the operators allowed in an expression tree, running time depends not

only on the number of operators allowed, but also the types of operators allowed. For

example, operations like multiplication, division, and mod are inherently more expensive for

SMT solvers to reason about. Shifts by arbitrary values are also expensive, which is why in

Table 4.4 the total adaptor synthesis time increased when we switched from using 7 operators

to 10 operators (by including shifts) even though the number of iterations decreased. The

apparent decrease in candidate adaptor synthesis time in Table 4.4 as we restrict operators

and constant values is a result of the decrease in the number of iterations.

Restricting adaptor inputs (which is the technique we have used so far to exclude cer-

tain counterexamples) can also decrease running time by reducing the number of iterations.

However, the adaptors generated in this case are only guaranteed to work on the restricted

input domain. For example, when we restricted the adaptor inputs in our example above
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to be in the range 0–100, the average number of iterations required over 5 trials was 9.6

(as opposed to 17.5), the average total running time was 62.4 seconds (as opposed to 179.7

seconds), and the following adaptors were synthesized:

• a(x) = x & (x - 0xc94e8f81)

• a(x) = (x - 0x802a8081) & x

• a(x) = (x - 0x7c898101) & x

• a(x) = (x � 0xe2322e00) & (0x↵ + x)

• a(x) = (x + 0xa6↵↵↵) & (x - 0xf0000000)

It turns out that none of these adaptors are correct over all 32-bit integers. For example,

none of them produce the correct result on the inputs 0x↵↵↵↵ or 0x1000100. In fact, they

all produce incorrect results on many of the inputs outside the range 0–100. This indicates

that adaptor inputs should only be restricted as a means of ignoring inputs on which we

allow functions to have di↵erent behaviors, and should not be restricted for the purpose of

improving synthesis performance.

4.2.1.2 Reducing Candidate Adaptor Synthesis Time

One way to reduce the time required to synthesize candidate integer arithmetic adaptors is

to decrease the expression tree depth. We cannot decrease the tree depth in our example

and still synthesize an adaptor that makes f1 and f2 equivalent (because there is no integer

arithmetic adaptor of depth 2 between f1 and f2 that makes them equivalent), so we instead

consider the e↵ect of re-running our original experiment with the expression tree depth

increased to 4. Candidate adaptor synthesis times for the depth 3 and depth 4 trees are

plotted in Figure 4.4.

We see in Figure 4.4 that at iteration 20 the time required to synthesize a candidate

adaptor with a depth 4 tree was almost 100 times the time required to synthesize a candidate



CHAPTER 4. RESULTS 31

Figure 4.4: A comparison of the time required to synthesize candidate adaptors at di↵erent
iterations using a depth 3 and depth 4 tree. Note that time is shown on a log scale.

adaptor with a depth 3 tree allowing the same operators and constant values. The reason for

this substantial di↵erence in performance is that increasing tree depth creates exponentially

more variables that the SMT solver has to reason about. This indicates that for synthesis

of integer arithmetic adaptors, we always want to use the smallest tree depth possible.

4.2.2 Caching SMT queries

At each iteration, the synthesizer component of our adaptor synthesis tool tries to find

an adaptor that makes two functions produce equivalent output on every input in the list

of current counterexamples. The list of current counterexamples grows by one with every

iteration, but aside from this new element the list of counterexamples remains the same.
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This means that the synthesizer must build many of the same symbolic formulas and make

many of the same queries to the SMT solver as it did in the previous iteration.

A simple way to avoid redoing this work is to store previously seen responses to SMT

queries in a cache. That way, when the synthesizer makes a query that it made before, there

is only a short delay in reponse time. This simple method is e↵ective because the majority

of time spent on candidate adaptor synthesis is spent waiting for replies to SMT queries.

In Figure 4.5 we plot the candidate adaptor synthesis and counterexample generation times

presented in Figure 4.3 along with with the corresponding adaptor synthesis times without

SMT query caching (note that all of the measurements presented so far have used SMT

query caching). We can see that without caching, candidate adaptor synthesis takes much

longer at later iterations.

Figure 4.5: A comparison of synthesis performance with and without SMT query caching.
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4.2.3 Iterative Search

Our discussion so far has made clear the need for reducing the adaptor search space by

restricting arithmetic expression tree depth and allowed operators and constants. However,

in practice it is di�cult to know what tree depth, operators, and constants will allow for an

adaptor between two arbitrary functions that makes those functions equivalent. On one hand

we want to support expressive arithmetic adaptors that are likely to allow for equivalence

between many functions, but on the other hand we want the adaptor synthesis process to

terminate in a reasonable amount of time.

One way to approach this problem is to use an iterative search process, starting with

arithmetic adaptors that use small trees allowing a restricted set of operators and constants,

and working up towards more complex adaptors as needed.
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Chapter 5: Discussion

So far we have presented a general technique for comparing arbitrary functions for equivalence

and discussed the application of this technique to functions that take only integer arguments.

In this chapter we provide a qualitative comparison of our work with existing tools as well

as a discussion of directions for future work.

5.1 Comparison with Existing Tools

Here we compare our approach to that of EQMINER [21], UC-KLEE [30], and SKETCH [33].

EQMINER and UC-KLEE are tools for detecting semantic clones. As discussed in Chapter 2,

EQMINER uses random testing to partition code into behaviorally equivalent clusters and

UC-KLEE uses symbolic execution to cross-check arbitrary C functions. SKETCH is a

program sketching tool that uses a CEGIS style of synthesis.

5.1.1 EQMINER

The fundamental di↵erence between our tool and EQMINER is that EQMINER uses random

testing to detect behaviorally equivalent code fragments while we use symbolic execution

to detect behaviorally equivalent functions. Random testing is highly scalable and natu-

rally allows for equivalence between diverse implementations of the same functionality, even

when those implementations have di↵erent error-handling and boundary cases. By contrast,

symbolic execution is expensive and may require user-involvement to allow for equivalence

between functions that have di↵erent behaviors on certain inputs. The primary drawback of

using random testing to compare code for equivalence is that while testing can guarantee be-

havioral non-equivalence on certain inputs, it can rarely guarantee behavioral equivalence on



CHAPTER 5. DISCUSSION 35

all inputs. This means that the behaviorally equivalent clusters that EQMINER constructs

may not actually consist of code fragments that are all behaviorally equivalent. Instead,

the clusters group functions that that have equivalent behaviors on a set of selected random

inputs (although if two pieces of code have equivalent behaviors on random inputs, it is likely

that they have equivalent behaviors on many inputs).

Symbolic execution allows for stronger guarantees about the equivalence of functions. A

complete implementation of our adaptor synthesis technique should be able to compare two

functions f1 and f2 using a family of (finite) adaptors to either (1) produce an adaptor that

makes the input/output behavior of f1 and f2 equivalent for all execution paths explored

or (2) prove that there is no adaptor in the specified adaptor family that makes f1 and f2

equivalent. Note that although symbolic execution cannot make guarantees about behaviors

on paths not explored (which is related to the inability of testing to guarantee behavior on

inputs not tested), it can characterize code behavior for many more inputs than testing.

The other di↵erence between our tool and EQMINER is that we compare functions for

equivalence while EQMINER compares code fragments. In order to compare the input/out-

put behavior of code fragments, EQMINER defines inputs as variables that are used but not

defined, and outputs as variables that are defined but not used. This definition treats inputs

and outputs as unordered sets, which means that EQMINER must allow for equivalence

between code fragments that take the same collection of inputs, regardless of the order of

those inputs. To this end, EQMINER defines code fragments C1 and C2 to be behaviorally

equivalent if there exist permutations p1 and p2 such that C1(p1(I)) = C2(p2(I)) for all in-

puts I. The combination of the permutations p1 and p2 can be viewed as an adaptor between

C1 and C2.
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5.1.2 UC-KLEE

UC-KLEE is built on top of the KLEE [6] symbolic execution system. Given two functions,

UC-KLEE either finds an input on which the behavior of those functions is di↵erent, or

proves that no such input exists for a finite number of explored paths. In this way, UC-

KLEE is similar to the verifier component of our adaptor synthesis tool (in this case, the

candidate adaptor being ‘verified’ is the identity adaptor). UC-KLEE does not allow for

equivalence between functions that have di↵erent argument structures.

One application of UC-KLEE is to cross-checking implementations of the same func-

tionality that have the same interface. One interesting feature of using UC-KLEE to cross

check implementations is that users are not required to write test cases or specifications

that describe the functionality that the implementations should provide. Instead, they may

need to describe ‘don’t care’ behaviors to UC-KLEE to suppress detection of uninteresting

di↵erences between functions. Uninteresting di↵erences include di↵erences in error handling

and behavior on invalid inputs. This is a feature of our tool as well— adaptor synthesis

does not require any knowledge of the expected behavior of two functions to compare them

for equivalence, but it may need to know how restrict the domain of counterexamples so

that the behavior of the functions on ‘bad’ inputs is ignored. Restricting the domain of

counterexamples is what allows us to consider diverse function implementations equivalent.

5.1.3 SKETCH

The idea of program sketching is to have the programmer write an incomplete partial pro-

gram (a ‘sketch’), and use synthesis to fill in the missing implementation details. Program

sketching is not the intended application of adaptor synthesis, but it is interesting to see

that our adaptor synthesis technique can be used for this purpose. To compare our tool to

SKETCH, we borrow two examples presented for the SKETCH system and rework them

into problems of adaptor synthesis. The examples presented require a family of adaptors
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that can replace arguments by constant integer values or variables (e.g. the family of integer

arithmetic adaptors allowing expression trees of depth 1).

In the first example, we synthesize an e�cient implementation of a function that con-

structs a bitmask isolating the rightmost 0-bit in an input integer. The original SKETCH

code is:

b i t [W] i s o l a t e 0 ( b i t [W] x ) { // W: word s i z e

b i t [W] r e t =0;

for ( int i = 0 ; i < W; i++)

i f ( ! x [ i ] ) { r e t [ i ] = 1 ; break }

return r e t ;

}

b i t [W] i s o l a t e 0Ske t ch ed ( b i t [W] x ) implements i s o l a t e 0 {

return ˜(x + ??) & (x + ??)

}

To make the behavior of isolate0Sketched match the specification isolate0, SKETCH

synthesizes constant integer values to replace the question marks, which are referred to as

‘holes.’ In this case, the first hole should be filled by 0 and the second hole should be filled

by 1. To make this example match the adaptor synthesis examples we have considered so

far, we let f1 be the reference implementation isolate0 above, and construct f2 as follows:

int f 2 ( int x , int q1 , int q2 ) {

return ˜(x + q1 ) & (x + q2 )

}

Here q1 and q2 are the unknown values that we need to replace with constants. Our tool

constructs the adaptor a(x) = (x, 0, 1), which indicates that f1(x) is equivalent to f2(x, 0, 1)

for any x.

The second example we consider involves polynomial division. The goal is to synthesize
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a polynomial f such that (x+1) ⇤ (x+2) ⇤ f = x4+6x3+11x2+6x. The original SKETCH

code is:

int spec ( int x ) {

return x⇤x⇤x⇤x + 6⇤x⇤x⇤x + 11⇤x⇤x + 6⇤x ;

}

int p ( int x ) implements spec {

return ( x+1) ⇤ ( x+2) ⇤ poly (3 , x ) ;

}

int poly ( int n , int x ) {

i f (n = = 0) return ? ? ;

else return x ⇤ poly (n�1, x ) + ?? ;

}

The holes that need to be filled in are in the function poly, which generates a polynomial

in x of degree at most n. To translate this example into our notation we let f1 be the

reference implementation spec and define f2 as follows:

int poly ( int x , int q1 , int q2 , int q3 , int q4 ) {

return x ⇤ ( x ⇤ ( x ⇤ q4 + q3 ) + q2 ) + q1 ;

}

int f 2 ( int x , int q1 , int q2 , int q3 , int q4 ) {

return ( x+1) ⇤ ( x+2) ⇤ poly (x , q1 , q2 , q3 , q4 ) ;

}

Note that we have expanded the definition of poly for n == 3. Our tool constructs

the adaptor a(x) = (x, 0, 3, 1, 0) between f1 and f2, indicating that f1(x) is equivalent to

f2(x, 0, 3, 1, 0) for all x. Or, equivalently, (x+ 1) ⇤ (x+ 2) ⇤ poly(x, 0, 3, 1, 0) = (x+ 1) ⇤ (x+

2) ⇤ x ⇤ (x+ 3) is equivalent to x4 + 6x3 + 11x2 + 6x.
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5.2 Future Work

There are many interesting directions for future work on this project. We summarize a few

below:

New families of adaptors — Some of the most interesting work to be done is in finding

e�cient ways to represent expressive adaptors. The family of adaptors presented in this

paper can only be used with functions that take only integer arguments, and may have poor

synthesis performance on complex expressions.

Complete comparison of function outputs — As discussed in Chapter 3, despite the ex-

amples presented here, comparing the output of two functions for equivalence is rarely as

simple as testing their return values for equality. One reason for this is that functions may

have semantically-equivalent return values that are not exactly equal. Another complication

is that functions should not be considered equivalent if they have di↵erent side-e↵ects. Our

current tool allows for basic comparisons of system calls and writes to memory, but does

not account for equivalence between the same system call with di↵erent arguments, di↵erent

system calls with related arguments, or equivalent writes to di↵erent locations in memory.

Comparing system calls and writes to memory for semantic equivalence is a nontrivial prob-

lem.

Automated counterexample restrictions — In Section 4.1.1.1 we restricted the counterex-

amples generated during verification based on assumptions about the intended use of our

example functions. In practice, assumptions about how a function will be used are reflected

in that function’s invariants. Invariants can be automatically recovered from code using

variable traces produced while executing that code on a collection of inputs [11].

Finding diverse function implementations — Our adaptor synthesis technique can not

tell whether the functions it finds to be behaviorally equivalent are computationally diverse,

which is a problem for N -version and N -variant applications where we need to be confident

that di↵erent program implementations have non overlapping bugs. This indicates a need

for the ability to characterize ‘how di↵erent’ behaviorally equivalent functions are from each
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other. One step in this direction might be to compare behaviorally equivalent functions for

syntactic similarity, with the intuition that behaviorally equivalent and semantically similar

functions likely have related bugs. (However, comparing functions for syntactic similarity

requires that the source code of the functions is available, which is not something that our

tool assumes.)

Better adaptors — The adaptors that our tool currently generates are not optimized

with respect to any particular property; our tool is equally likely to synthesize any adaptor

that makes f1 and f2 equivalent. For example, when using the family of integer arithmetic

adaptors, our tool may generate the adaptor a(x) = (0x↵↵↵↵ & x) � (x � x) when the

simpler adaptor a(x) = x would have su�ced. The iterative search approach described in

Section 4.2 could address this issue by giving preference simple adaptors that involve e�cient

operations.
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Chapter 6: Conclusion

We have presented a novel technique for detecting behaviorally equivalent functions, even

when those functions have di↵erent argument structures. The approach works by automati-

cally synthesizing an adaptor between two functions that makes their input/output behavior

equivalent, or proving that no such adaptor exists within a specified family of adaptors. We

implemented our approach to compare functions at the binary level on the Linux x86-64 plat-

form. One type of adaptor that our implementation supports is the family of integer arith-

metic adaptors, which are constructed from arithmetic operations over integer values. Our

preliminary assessments of our implementation suggest that adaptor synthesis is a promising

approach to mining diverse function implementations that can be used to construct diverse

program implementations for a multivariant execution system.
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